More on open and closed sets

Interior, closure, boundary

Most sets in \mathbb{R}^N can be neither open nor closed. These sets can be very complex. Fortunately, for any $A \subseteq \mathbb{R}^N$, there are some open/closed sets closely related to it. These sets are its interior, closure, and boundary.

Exercise 1. Find $A \subseteq \mathbb{R}^2$ that is neither open nor closed. Justify your answer.

Definition 1. Let $A \subseteq \mathbb{R}^N$. Define

• (Interior) its interior A^o to be the union of all open sets contained in A:

$$A^o := \bigcup_{E \subseteq A, E \text{ open } E}; \tag{1}$$

• (Closure) its closure \overline{A} to be the intersection of all closed sets containing A:

$$\overline{E} := \bigcap_{E \supseteq A, E \ closed} E; \tag{2}$$

• (Boundary) its boundary ∂A to be

$$\partial A := \overline{A} - A^o. \tag{3}$$

Exercise 2. Let $A \subseteq \mathbb{R}^N$. Prove the following:

- a) A^o is the largest open set contained in A, in the sense that any $U \subseteq A$, if U is open, then $U \subseteq A^o$;
- b) \overline{A} is the smallest closed set containing A.

Exercise 3. Let $A \subseteq \mathbb{R}^N$. Prove that A is open if and only if A equals the union of all open balls contained in it.

Exercise 4. Prove the following:

- a) A is open if and only if $A = A^o$;
- b) A is closed if and only if $A = \overline{A}$.

Example 2. Find the interior, closure, boundary of the following sets.

- a) $A := \{(x, y) \in \mathbb{R}^2 | x < y\};$
- b) $A \subseteq \mathbb{R}^N$ consisting of finitely many points.
- c) $A := \left\{ \left(\frac{1}{n}, \frac{1}{m}\right) \mid n, m \in \mathbb{N} \right\} \subseteq \mathbb{R}^2.$
- d) $A := \mathbb{Q} \times \mathbb{Q} \subset \mathbb{R}^2$.
- e) A is a hyperplane.

Solution. We solve part d) and leave the rest as exercises.

First we claim that the interior A^o is empty. By definition, all we need to show is that for any U open, $U \not\subseteq A$. Take any U open. By definition of open sets there is a ball $B(\boldsymbol{x}_0, r) \subseteq A$. Now if $\boldsymbol{x}_0 \notin \mathbb{Q} \times \mathbb{Q}$, we already have $U \not\subseteq A$; Otherwise take $0 < r_1 < r$ such that $r_1^2 \notin \mathbb{Q}$. Thus any vector $\boldsymbol{y} \in S(\boldsymbol{0}, r_1) \notin \mathbb{Q} \times \mathbb{Q}$ and consequently $\boldsymbol{x}_0 + \boldsymbol{y} \notin \mathbb{Q} \times \mathbb{Q} = A$.

Next we claim that the closure of A is \mathbb{R}^2 . To show this we need to show that any closed set E satisfying $A \subseteq E$, we must have $E = \mathbb{R}^2$, or equivalently $E^c = \emptyset$. Assume otherwise. As E^c is open by definition of closed sets, there is a ball $B(\mathbf{x}_0, r) \subseteq E^c \subseteq A^c$ for some r > 0. By density of A in \mathbb{R}^2 we see that $B(\mathbf{x}_0, r) \cap A \neq \emptyset$. Contradiction.

Finally we have $\partial A = \overline{A} - A^o = \mathbb{R}^2$.

Exercise 5. Solve a), b), d), e).

Lemma 3. Let $A \subseteq B \subseteq \mathbb{R}^N$. Then $A^o \subseteq B^o$, $\overline{A} \subseteq \overline{B}$.

Proof. We prove the second claim and leave the first as exercise.

Notice that \overline{B} is closed, and $A \subseteq B \subseteq \overline{B}$. Thus by definition $\overline{A} \subseteq \overline{B}$.

Proposition 4. (Properties of interior) Let $A \subseteq \mathbb{R}^{N}$. Then

- a) A^o is open;
- b) $A^o \subseteq A;$
- c) $(A^{o})^{o} = A^{o};$
- $d) \ (A\cap B)^o \,{=}\, A^o \cap B^o;$

Proof. a), b), c) are trivial and left as exercises. We prove d) here. Recall that to prove equality of two sets, we need to prove one is a subset of the other and vice versa.

• $A^{o} \cap B^{o} \subseteq (A \cap B)^{o}$. As $A^{o} \subseteq A, B^{o} \subseteq B$, we have $A^{o} \cap B^{o} \subseteq A \cap B$; Furthermore as A^{o}, B^{o} are open, we have $A^{o} \cap B^{o}$ is open. By definition of interior we have

$$A^{o} \cap B^{o} \subseteq (A \cap B)^{o}; \tag{4}$$

• $(A \cap B)^o \subseteq A^o \cap B^o$. Since $(A \cap B) \subseteq A$, we have $(A \cap B)^o \subseteq A^o$. Similarly $(A \cap B)^o \subseteq B^o$. Therefore $(A \cap B)^o \subseteq A^o \cap B^o$.

Proposition 5. (Properties of closure) Let $A \subseteq \mathbb{R}^N$. Then

- a) \overline{A} is closed;
- b) $A \subseteq \overline{A};$
- c) Closure of closure of A equals closure of A: $\overline{(A)} = \overline{A}$.
- d) $\overline{(A \cup B)} = \overline{A} \cup \overline{B}.$

Proof. Left as exercises.

Exercise 6. Find two sets A, B such that $\overline{A \cap B} \subsetneq \overline{A} \cap \overline{B}$.

Proposition 6. (Properties of boundary) Let $A \subseteq \mathbb{R}^N$. Then

a) $\partial A = \{ \boldsymbol{x} | \forall r > 0, B(\boldsymbol{x}, r) \cap A \neq \emptyset \text{ and } B(\boldsymbol{x}, r) \cap A^c \neq \emptyset \};$

- b) ∂A is closed;
- c) $\partial(\partial A) \subseteq \partial A$.
- d) Let $A, B \subseteq \mathbb{R}^N$ then

$$\partial(A \cup B) \subseteq (\partial A) \cup (\partial B); \qquad \partial(A \cap B) \supseteq (\partial A) \cap (\partial B). \tag{5}$$

Proof. Left as exercises.

Exercise 7. For each relation in d), find an example where "=" holds and an example where " \subset " holds.

Exercise 8. Critique the following claim:

Let $A \subseteq \mathbb{R}^N$. Then $\partial A = \{ \boldsymbol{x} \in \mathbb{R}^n | \operatorname{dist}(\boldsymbol{x}, A) = \operatorname{dist}(\boldsymbol{x}, A^c) = 0 \}.$

If you think it is true, prove; Otherwise provide a counterexample.

Exercise 9. Let $E \subseteq \mathbb{R}^N$ be convex. Prove that if $\boldsymbol{x} \in \partial E$, then $\boldsymbol{x} \in \partial((\overline{E})^c)$. Find a non-convex set S for which this claim does not hold.

Cluster point

Definition 7. (Cluster point) Let $A \subseteq \mathbb{R}^N$. x_0 is a cluster point A if and only if for any open set U containing x_0 , $A \cap (U - \{x_0\}) \neq \emptyset$.

Remark 8. Recall our discussion on limit of functions. Now we can say this can only be discussed at cluster points of the domain of f.

Exercise 10. Let $A \subseteq \mathbb{R}^N$ be open. Then

- a) Any $\boldsymbol{x} \in A$ is a cluster point of A;
- b) Find an open set such that there is $x \notin A$ but is a cluster point of A.

Exercise 11. Find a closed set $A \subseteq \mathbb{R}^N$ satisfying each of the following (not simultaneously!)

- a) A has no cluster point;
- b) Any $\boldsymbol{x} \in A$ is a cluster point of A.

Example 9. \mathbb{N} has no cluster point in \mathbb{R} .

Proof. Take any $x \in \mathbb{R}$. There are two cases:

- 1. $x \in \mathbb{N}$. Take r = 1/2. Then $\mathbb{N} \cap (B(x, r) \{x\}) = \emptyset$;
- 2. $x \notin \mathbb{N}$. Let $m \in \mathbb{N}$ be such that m < x < m + 1. Take $r = \frac{1}{2} \min(|x m|, |x m 1|)$, then we again have $\mathbb{N} \cap (B(x, r) \{x\}) = \emptyset$.

Exercise 12. Find the cluster point(s) for the set $S := \{1/n | n \in \mathbb{N}\} \subset \mathbb{R}$. Justify your answer.

Exercise 13. Find the cluster point(s) for the set $E := \mathbb{Q} \times (\mathbb{R} - \mathbb{Q}) \subset \mathbb{R}^2$, that is $E := \{(x, y) | x \in \mathbb{Q}, y \notin \mathbb{Q}\}$.

Example 10. Let $\boldsymbol{x}_0 \in \mathbb{R}^N$ and r > 0. Then the set of cluster points for the open ball $B(\boldsymbol{x}, r)$ is its closure $\overline{B(\boldsymbol{x}, r)}$.

Proposition 11. Let $x \in \mathbb{R}^N$ and $A \subseteq \mathbb{R}^N$. The following are equivalent.

- a) \boldsymbol{x} is a cluster point of A;
- b) $\boldsymbol{x} \in \overline{A \{\boldsymbol{x}\}};$
- c) dist $(\boldsymbol{x}, A \{\boldsymbol{x}\}) = 0;$
- d) For any open set U containing x_0 , $A \cap (U \{x_0\})$ has infinitely many points.

Proof. We only prove a) \Longrightarrow d) here and leave the rest, which are much easier, as exercises.

Let x_0 be a cluster point of A. We will construct a sequence $\{x_n\} \subseteq A$, $x_n \neq x_0$ for all n, such that for any open set U containing x_0 , there is $K \in \mathbb{N}$ that for all n > K, $x_n \in U$.

First consider the open ball $B(\boldsymbol{x}_0, 1/2)$. Since \boldsymbol{x} is a cluster point of A, there is a point in $A \cap B(\boldsymbol{x}_0, 1/2)$. Call it \boldsymbol{x}_1 . Now there must be $\boldsymbol{x}_0 \neq \boldsymbol{x}_2 \in B\left(\boldsymbol{x}_0, \frac{\|\boldsymbol{x}_1 - \boldsymbol{x}_0\|}{2}\right) \cap A$. Next we find $\boldsymbol{x}_0 \neq \boldsymbol{x}_3 \in B\left(\boldsymbol{x}_0, \frac{\|\boldsymbol{x}_2 - \boldsymbol{x}_0\|}{2}\right) \cap A$, and so on.

Now observe that $\|\boldsymbol{x}_n - \boldsymbol{x}_0\| < 2^{-n}$. For any open set U containing \boldsymbol{x}_0 , there is r > 0 such that $B(\boldsymbol{x}_0, r) \subseteq U$. Now choose $K \in \mathbb{N}$ such that $K > -\log_2 r$. We have, for all n > K,

$$\|\boldsymbol{x}_n - \boldsymbol{x}_0\| < 2^{-K} < r \Longrightarrow \boldsymbol{x}_n \in B(\boldsymbol{x}_0, r) \subseteq U.$$
(6)

Thus ends the proof.

Exercise 14. Complete the proof of the proposition.

Definition 12. (Isolated point) If $x \in A$ is not a cluster point of A, we say x is an isolated point of A.

Exercise 15. Prove that \boldsymbol{x} is a cluster point of A if and only if it is not an isolated point of A.

Proposition 13. Let $\mathbf{x} \in \mathbb{R}^N$ and $A \subseteq \mathbb{R}^N$. Then \mathbf{x} is an isolated point of A if and only if $\mathbf{x} \in A$ but dist $(\mathbf{x}, A - \{\mathbf{x}\}) > 0$.

Exercise 16. Find the cluster and isolated points of the following sets. Justify your answers.

- a) $A = \{(x, y) | |x| + |y| \leq 1];$
- b) $B = \{(x, y) | x \ge 0\};$
- c) $C = \{(x, y) | x^2 + y^2 < 1\};$
- d) $D = \{(1/m, 1/n) | m, n \in \mathbb{N}\};$
- e) $E = \{(x, y) | x^2 < 1\} \cup \{(x, y) | y^2 > 1\}.$

Lemma 14. Let $A \subseteq \mathbb{R}^N$. Then

 $A \text{ is closed} \iff A \text{ contains all its cluster points.}$ (7)

Proof.

 \implies . Assume there is $\mathbf{x}_0 \notin E$ that is a cluster point of E. Then for each m, there is $\mathbf{x}_m \in B(\mathbf{x}_0, 1/m) \cap E$. On the other hand, as E is closed, E^c is open, which means there is $\varepsilon_0 > 0$ such that $B(\mathbf{x}_0, \varepsilon_0) \cap E = \emptyset$. Taking $m > \varepsilon_0^{-1}$ leads to contradiction.

 \Leftarrow . Assume that A is not closed. Then by definition A^c is not open. This means there is $\mathbf{x}_0 \in A^c$ such that for any open set $U \ni \mathbf{x}_0$, $U \not\subseteq A^c$. It follows that $U \cap A \neq \emptyset$. Since $\mathbf{x}_0 \notin A$, there must be $\mathbf{x} \neq \mathbf{x}_0$ inside $U \cap A$. By definition \mathbf{x}_0 is a cluster point of A. But by assumption A does not contain \mathbf{x}_0 . Contradiction.

Problem 1. Let $A \subseteq \mathbb{R}^N$. Prove $(\overline{A^c})^c = A^o$, that is we can represent interior using closure and complement only. Can you find a similar equality for \overline{A} ?

Problem 2. Let $A \subseteq \mathbb{R}^N$. Prove that $\partial(\overline{A}) \subseteq \partial A, \partial(A^o) \subseteq \partial A$. Find counterexamples to show that \subseteq cannot be replaced by =.

Problem 3. Let C be convex and nonempty. Prove

 $(\overline{C})^o = C^o, \qquad \overline{C^o} = \overline{C}.$ (8)

Do these relations hold for arbitrary set A? Justify your claims.

Problem 4. ([?]) Let $A \subseteq \mathbb{R}^N$ be nonempty. Let W be the collection of sets obtained from E by applying c, o, finitely many times in any order. Prove that W has at most 14 elements.

Problem 5. Let $\{\boldsymbol{x}_n\} \subset \mathbb{R}^N$ be a sequence. Let $A = \{\boldsymbol{x} | \boldsymbol{x} \text{ is a cluster point of the set } \{\boldsymbol{x}_n\} \}$ and $B = \{\boldsymbol{x} | \boldsymbol{x} = \lim_{k \to \infty} \boldsymbol{x}_{n_k} \text{ for some subsequence } \{\boldsymbol{x}_{n_k}\} \}$. Explore the relation between A and B. Justify your answer.

Problem 6. Let *I* be an interval in \mathbb{R} . Let $f: \mathbb{R} \mapsto \mathbb{R}$ be continuous on *I*. Find a counterexample for each of the following claims:

- a) I is closed $\implies f(I)$ is closed;
- b) I is closed $\implies f(I)$ is bounded;
- c) I is open $\implies f(I)$ is open;
- d) I is bounded $\implies f(I)$ is bounded;
- e) I is bounded and open $\implies \max f(I)$ does not exist;

Problem 7. Let $f: \mathbb{R} \to \mathbb{R}$ be bounded. Assume that its graph $\{(x, f(x)) | x \in \mathbb{R}\}$ is a closed set in \mathbb{R}^2 . Prove that f is continuous. Can you generalize this to \mathbb{R}^N ?