
More on open and closed sets

Interior, closure, boundary

Most sets in RN can be neither open nor closed. These sets can be very complex. Fortunately,
for any A ⊆RN, there are some open/closed sets closely related to it. These sets are its interior,
closure, and boundary.

Exercise 1. Find A ⊆R2 that is neither open nor closed. Justify your answer.

Definition 1. Let A ⊆RN. Define

• (Interior) its interior Ao to be the union of all open sets contained in A:

Ao7 ∪E⊆A,E open E; (1)

• (Closure) its closure A to be the intersection of all closed sets containing A:

E 7 ∩E⊇A,E closedE; (2)

• (Boundary) its boundary ∂A to be

∂A7 A−Ao. (3)

Exercise 2. Let A ⊆RN. Prove the following:

a) Ao is the largest open set contained in A, in the sense that any U ⊆A, if U is open, then U ⊆Ao;

b) Ā is the smallest closed set containing A.

Exercise 3. Let A⊆RN. Prove that A is open if and only if A equals the union of all open balls contained in it.

Exercise 4. Prove the following:

a) A is open if and only if A= Ao;

b) A is closed if and only if A = Ā.

Example 2. Find the interior, closure, boundary of the following sets.

a) A7 {(x, y)∈R2 O x < y};

b) A⊆RN consisting of finitely many points.

c) A7 {(

1

n
,

1

m

)O n, m∈N
}

⊆R2.

d) A7 Q×Q⊂R2.

e) A is a hyperplane.

Solution. We solve part d) and leave the rest as exercises.

First we claim that the interior Ao is empty. By definition, all we need to show is that for any
U open, U⊆A. Take any U open. By definition of open sets there is a ball B(x0, r) ⊆ A. Now if
x0 � Q×Q, we already have U⊆A; Otherwise take 0 < r1 < r such that r1

2 � Q. Thus any vector
y ∈S(0, r1) � Q×Q and consequently x0 + y � Q×Q=A.
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Next we claim that the closure of A is R2. To show this we need to show that any closed set E

satisfying A⊆E, we must have E =R2, or equivalently Ec =∅. Assume otherwise. As Ec is open
by definition of closed sets, there is a ball B(x0, r)⊆ Ec ⊆ Ac for some r > 0. By density of A in
R2 we see that B(x0, r)∩A� ∅. Contradiction.

Finally we have ∂A= Ā −Ao =R2.

Exercise 5. Solve a), b), d), e).

Lemma 3. Let A⊆B ⊆RN. Then Ao ⊆Bo, A⊆B.

Proof. We prove the second claim and leave the first as exercise.

Notice that B̄ is closed, and A⊆B ⊆ B̄ . Thus by definition Ā ⊆ B̄ . �

Proposition 4. (Properties of interior) Let A⊆RN. Then

a) Ao is open;

b) Ao ⊆A;

c) (Ao)o = Ao;

d) (A∩B)o = Ao∩Bo;

Proof. a), b), c) are trivial and left as exercises. We prove d) here. Recall that to prove equality
of two sets, we need to prove one is a subset of the other and vice versa.

• Ao ∩Bo ⊆ (A ∩B)o. As Ao ⊆A, Bo ⊆B, we have Ao ∩Bo ⊆A∩B; Furthermore as Ao, Bo

are open, we have Ao∩Bo is open. By definition of interior we have

Ao∩Bo ⊆ (A∩B)o; (4)

• (A ∩ B)o ⊆ Ao ∩ Bo. Since (A ∩ B) ⊆ A, we have (A ∩ B)o ⊆ Ao. Similarly (A ∩ B)o ⊆ Bo.
Therefore (A∩B)o ⊆Ao∩Bo. �

Proposition 5. (Properties of closure) Let A⊆RN. Then

a) Ā is closed;

b) A⊆ Ā;

c) Closure of closure of A equals closure of A: (A)= Ā.

d) (A∪B)= Ā ∪ B̄.

Proof. Left as exercises. �

Exercise 6. Find two sets A, B such that A∩B (A∩B.

Proposition 6. (Properties of boundary) Let A⊆RN. Then

a) ∂A = {xO ∀r > 0, B(x, r)∩A� ∅ and B(x, r)∩Ac� ∅};
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b) ∂A is closed;

c) ∂(∂A)⊆ ∂A.

d) Let A, B ⊆RN then

∂(A∪B)⊆ (∂A)∪ (∂B); ∂(A∩B)⊇ (∂A)∩ (∂B). (5)

Proof. Left as exercises. �

Exercise 7. For each relation in d), find an example where “=” holds and an example where “⊂” holds.

Exercise 8. Critique the following claim:

Let A ⊆RN. Then ∂A = {x∈RnO dist(x, A) =dist(x, Ac)= 0}.

If you think it is true, prove; Otherwise provide a counterexample.

Exercise 9. Let E ⊆RN be convex. Prove that if x∈∂E, then x∈∂((E)c). Find a non-convex set S for which

this claim does not hold.

Cluster point

Definition 7. (Cluster point) Let A ⊆RN. x0 is a cluster point A if and only if for any open

set U containing x0, A∩ (U −{x0})=∅.

Remark 8. Recall our discussion on limit of functions. Now we can say this can only be discussed
at cluster points of the domain of f .

Exercise 10. Let A ⊆RN be open. Then

a) Any x∈A is a cluster point of A;

b) Find an open set such that there is x� A but is a cluster point of A.

Exercise 11. Find a closed set A ⊆RN satisfying each of the following (not simultaneously!)

a) A has no cluster point;

b) Any x∈A is a cluster point of A.

Example 9. N has no cluster point in R.

Proof. Take any x∈R. There are two cases:

1. x∈N. Take r = 1/2. Then N∩ (B(x, r)−{x})= ∅;

2. x � N. Let m ∈N be such that m < x < m + 1. Take r =
1

2
min (|x−m|, |x −m− 1|), then

we again have N∩ (B(x, r)−{x}) = ∅. �

Exercise 12. Find the cluster point(s) for the set S 7 {1/nO n∈N}⊂R. Justify your answer.

Exercise 13. Find the cluster point(s) for the set E 7 Q× (R−Q)⊂R2, that is E 7 {(x, y)O x∈Q, y � Q}.

Example 10. Let x0∈RN and r > 0. Then the set of cluster points for the open ball B(x, r) is

its closure B(x, r).
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Proposition 11. Let x∈RN and A⊆RN. The following are equivalent.

a) x is a cluster point of A;

b) x∈A−{x};

c) dist(x, A−{x})=0;

d) For any open set U containing x0, A∩ (U −{x0}) has infinitely many points.

Proof. We only prove a)�d) here and leave the rest, which are much easier, as exercises.

Let x0 be a cluster point of A. We will construct a sequence {xn}⊆A, xn� x0 for all n, such that
for any open set U containing x0, there is K ∈N that for all n > K, xn∈U .

First consider the open ball B(x0, 1/2). Since x is a cluster point of A, there is a point in

A ∩ B(x0, 1/2). Call it x1. Now there must be x0 � x2 ∈ B
(

x0,
‖x1−x0‖

2

)

∩ A. Next we find

x0� x3∈B
(

x0,
‖x2−x0‖

2

)

∩A, and so on.

Now observe that ‖xn − x0‖ < 2−n. For any open set U containing x0, there is r > 0 such that
B(x0, r)⊆U . Now choose K ∈N such that K >−log2 r. We have, for all n > K,

‖xn −x0‖< 2−K < r� xn∈B(x0, r)⊆U. (6)

Thus ends the proof. �

Exercise 14. Complete the proof of the proposition.

Definition 12. (Isolated point) If x ∈ A is not a cluster point of A, we say x is an isolated

point of A.

Exercise 15. Prove that x is a cluster point of A if and only if it is not an isolated point of A.

Proposition 13. Let x∈RN and A⊆RN. Then x is an isolated point of A if and only if x∈A

but dist(x, A−{x})> 0.

Exercise 16. Find the cluster and isolated points of the following sets. Justify your answers.

a) A = {(x, y)O |x|+ |y |61];

b) B = {(x, y)O x >0};

c) C = {(x, y)O x2 + y2 < 1};

d) D = {(1/m, 1/n)O m, n∈N};

e) E = {(x, y)O x2 < 1} ∪ {(x, y)O y2 > 1}.

Lemma 14. Let A⊆RN. Then

A is closed�A contains all its cluster points. (7)

Proof.
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� . Assume there is x0 � E that is a cluster point of E. Then for each m, there is xm ∈ B(x0,

1/m) ∩ E. On the other hand, as E is closed, Ec is open, which means there is ε0 > 0 such that

B(x0, ε0)∩E = ∅. Taking m > ε0

−1 leads to contradiction.� . Assume that A is not closed. Then by definition Ac is not open. This means there is x0∈Ac

such that for any open set U ∋ x0, U⊆Ac. It follows that U ∩ A � ∅. Since x0 � A, there must
be x � x0 inside U ∩ A. By definition x0 is a cluster point of A. But by assumption A does not
contain x0. Contradiction. �

————————————————————————————————————————-

Problem 1. Let A ⊆RN. Prove (Ac)c = Ao, that is we can represent interior using closure and complement

only. Can you find a similar equality for Ā?

Problem 2. Let A ⊆RN. Prove that ∂(A)⊆∂A,∂(Ao)⊆∂A. Find counterexamples to show that ⊆ cannot be

replaced by =.

Problem 3. Let C be convex and nonempty. Prove

(C)o = Co, Co = C. (8)

Do these relations hold for arbitrary set A? Justify your claims.

Problem 4. ([?]) Let A ⊆RN be nonempty. Let W be the collection of sets obtained from E by applying c,o,

¯ finitely many times in any order. Prove that W has at most 14 elements.

Problem 5. Let {xn} ⊂ RN be a sequence. Let A = {xO x is a cluster point of the set {xn}} and B = {xO
x= limk�∞xnk

for some subsequence {xnk
}}. Explore the relation between A and B. Justify your answer.

Problem 6. Let I be an interval in R. Let f :R� R be continuous on I. Find a counterexample for each of

the following claims:

a) I is closed� f(I) is closed;

b) I is closed� f(I) is bounded;

c) I is open� f(I) is open;

d) I is bounded� f(I) is bounded;

e) I is bounded and open� max f(I) does not exist;

Problem 7. Let f :R� R be bounded. Assume that its graph {(x, f(x))O x∈R} is a closed set in R2. Prove

that f is continuous. Can you generalize this to RN?

5


