More on open and closed sets

Interior, closure, boundary

Most sets in R™ can be neither open nor closed. These sets can be very complex. Fortunately,
for any A CRY, there are some open/closed sets closely related to it. These sets are its interior,
closure, and boundary.

Exercise 1. Find A CIR? that is neither open nor closed. Justify your answer.

Definition 1. Let A CRY. Define

e (Interior) its interior A° to be the union of all open sets contained in A:
A%:=UgcA,E open I (1)
e (Closure) its closure A to be the intersection of all closed sets containing A:
E:=NE>4.F closeal; (2)

e (Boundary) its boundary 0A to be

OA:= A — A°. (3)

Exercise 2. Let A CRY. Prove the following:

a) A° is the largest open set contained in A, in the sense that any U C A, if U is open, then U C A°;

b) A is the smallest closed set containing A.
Exercise 3. Let A CRY. Prove that A is open if and only if A equals the union of all open balls contained in it.
Exercise 4. Prove the following:

a) A is open if and only if A= A°;

b) A is closed if and only if A= A.
Example 2. Find the interior, closure, boundary of the following sets.
a) Ai={(z,y)eR}x <y}
b) ACRY consisting of finitely many points.
c) A:= {(%,%)\ n,meN} CR2
d) A:=QxQCcR2
e) A is a hyperplane.

Solution. We solve part d) and leave the rest as exercises.

First we claim that the interior A° is empty. By definition, all we need to show is that for any
U open, UZA. Take any U open. By definition of open sets there is a ball B(xo, r) C A. Now if
xo ¢ Q x Q, we already have UZ A; Otherwise take 0 <1 <7 such that r? ¢ Q. Thus any vector
y€5(0,r1) ¢ Q x Q and consequently zo+ y ¢ Q x Q= A.



Next we claim that the closure of A is R?. To show this we need to show that any closed set E
satisfying A C E, we must have £ =1R?, or equivalently E°= . Assume otherwise. As E° is open
by definition of closed sets, there is a ball B(xg,r) C E€ C A€ for some r > 0. By density of A in
R? we see that B(zo,7) N A+ @. Contradiction.

Finally we have 04 = A — A°=R2.

Exercise 5. Solve a), b), d), e).

Lemma 3. Let AC BCRY. Then A°C B°, AC B.

Proof. We prove the second claim and leave the first as exercise.
Notice that B is closed, and A C B C B. Thus by definition A C B. O
Proposition 4. (Properties of interior) Let ACRYN. Then

a) A° is open;

b) A°C A;

c) (A°)° = A°;

d) (ANB)°=A°NB;

Proof. a), b), ¢) are trivial and left as exercises. We prove d) here. Recall that to prove equality
of two sets, we need to prove one is a subset of the other and vice versa.

e A°NB°C(ANB)° As A°C A, B°C B, we have A°N B° C AN B; Furthermore as A%, B°
are open, we have A°N B¢ is open. By definition of interior we have

A°NB°C (ANB)° (4)

e (ANB)°C A°N B°. Since (AN B) C A, we have (AN B)° C A°. Similarly (AN B)° C B°.
Therefore (AN B)° C A°N BC. O

Proposition 5. (Properties of closure) Let A CRYN. Then
a) A is closed;
b) ACA;

¢) Closure of closure of A equals closure of A: mzﬁ.

d) (AUB)=AUB.
Proof. Left as exercises. O
Exercise 6. Find two sets A, B such that ANB CANB.

Proposition 6. (Properties of boundary) Let ACRY. Then

a) 0A={x|Vr>0,B(x,r)NA#+ @ and B(xz,r)N A+ &};



b) OA is closed;
c) O(0A) COA.

d) Let A,BCRY then

O(AUB)C (0A)U(OB); (AN B) 2D (dA)N(B). (5)
Proof. Left as exercises. O
Exercise 7. For each relation in d), find an example where “=" holds and an example where “C” holds.

Exercise 8. Critique the following claim:
Let ACRY. Then 9A = {x ¢ R"| dist(x, A) = dist(x, A°) =0}.
If you think it is true, prove; Otherwise provide a counterexample.

Exercise 9. Let E CRY be convex. Prove that if @ € 9E, then = € 9((F)®). Find a non-convex set S for which
this claim does not hold.

Cluster point

Definition 7. (Cluster point) Let A CRY. xq is a cluster point A if and only if for any open
set U containing o, AN (U —{xo})#2.

Remark 8. Recall our discussion on limit of functions. Now we can say this can only be discussed
at cluster points of the domain of f.
Exercise 10. Let A CRY be open. Then
a) Any x € A is a cluster point of A;
b) Find an open set such that there is @ ¢ A but is a cluster point of A.
Exercise 11. Find a closed set A C RN satisfying each of the following (not simultaneously!)
a) A has no cluster point;

b) Any « € A is a cluster point of A.
Example 9. N has no cluster point in R.

Proof. Take any z € R. There are two cases:
1. x € N. Take r=1/2. Then NN (B(z,r) — {z}) =2;

2. ¢ N. Let m € N be such that m <a <m + 1. Take T:%min(|zfm|,|zfmfl|),then

we again have NN (B(z,r) —{z})=2. O

Exercise 12. Find the cluster point(s) for the set S:={1/n|n € N} C R. Justify your answer.

Exercise 13. Find the cluster point(s) for the set E:=Q x (R— Q) C R?, that is E:={(z,y)| s € Q,y ¢ Q}.

Example 10. Let £o € R" and r > 0. Then the set of cluster points for the open ball B(z,r) is
its closure B(x,r).



Proposition 11. Let z € RN and A CRYN. The following are equivalent.
a) x is a cluster point of A;
b) xeA—{x};
¢) dist(x, A—{x})=0;

d) For any open set U containing xo, AN (U — {xo}) has infinitely many points.

Proof. We only prove a)==-d) here and leave the rest, which are much easier, as exercises.

Let x( be a cluster point of A. We will construct a sequence {x,, } C A, x,, # x¢ for all n, such that
for any open set U containing x¢, there is K € N that for all n > K, x, € U.

First consider the open ball B(xzg, 1/2). Since x is a cluster point of A, there is a point in
A N B(xp, 1/2). Call it ;. Now there must be xy £ @2 € B(a:o, M) N A. Next we find

wo#mgeB(wo,M) N A, and so on.

Now observe that ||, — xo|| < 27™. For any open set U containing @, there is r > 0 such that
B(xg,7) CU. Now choose K € N such that K > —logsr. We have, for all n> K,

|, —xo|| < 27K <r =z, € B(zo,r) CU. (6)
Thus ends the proof. O

Exercise 14. Complete the proof of the proposition.

Definition 12. (Isolated point) If x € A is not a cluster point of A, we say x is an isolated
point of A.

Exercise 15. Prove that @ is a cluster point of A if and only if it is not an isolated point of A.

Proposition 13. Let x € RN and ACRY. Then x is an isolated point of A if and only if x € A
but dist(xz, A —{x})>0.

Exercise 16. Find the cluster and isolated points of the following sets. Justify your answers.
a) A={(z,y)| x| +|y[ <1];
b) B={(z,y)|z>0};
) C={(z,y)|2?+y><1};
d) D={(1/m,1/n)|m,ne€N};

e) E={(z,y)z®><1}U{(z,y)| y*>>1}.
Lemma 14. Let ACRYN. Then

A is closed < A contains all its cluster points. (7)

Proof.



=—. Assume there is xo ¢ F that is a cluster point of E. Then for each m, there is x,, € B(x,
1/m) N E. On the other hand, as F is closed, E° is open, which means there is g9 > 0 such that
B(z0,£0) N E=@. Taking m > ¢, ' leads to contradiction.

<. Assume that A is not closed. Then by definition A€ is not open. This means there is xy € A€
such that for any open set U 3 xg, UZA®. It follows that U N A+ @. Since xo ¢ A, there must
be @ # x( inside U N A. By definition xg is a cluster point of A. But by assumption A does not
contain xg. Contradiction. O

Problem 1. Let A C RM. Prove (A€)¢ = A°, that is we can represent interior using closure and complement
only. Can you find a similar equality for A?

Problem 2. Let A CRY. Prove that 9(A) C dA,0(A°) C HA. Find counterexamples to show that C cannot be
replaced by =.

Problem 3. Let C' be convex and nonempty. Prove

(C)e=ce, co=C. (8)
Do these relations hold for arbitrary set A? Justify your claims.

Problem 4. (|7]) Let A CRY be nonempty. Let W be the collection of sets obtained from E by applying ©,°,
~ finitely many times in any order. Prove that W has at most 14 elements.

Problem 5. Let {x,} C RY be a sequence. Let A = {a| x is a cluster point of the set {x,}} and B = {x|
@ =limy__, @y, for some subsequence {x,, } }. Explore the relation between A and B. Justify your answer.

Problem 6. Let I be an interval in R. Let f: R— R be continuous on I. Find a counterexample for each of
the following claims:

a) I is closed = f(I) is closed;

b) I is closed = f(I) is bounded;

c) I is open => f(I) is open;

d) I is bounded => f([) is bounded;

e) I is bounded and open => max f(I) does not exist;

Problem 7. Let f: R+~ R be bounded. Assume that its graph {(z, f(z))| = € R} is a closed set in R2. Prove
that f is continuous. Can you generalize this to RV?



