Convergence of sequences, limit of functions, continuity

With the definition of norm, or more precisely the distance between any two vectors in \mathbb{R}^N :

dist
$$(\boldsymbol{x}, \boldsymbol{y}) := \|\boldsymbol{x} - \boldsymbol{y}\| := [(x_1 - y_1)^2 + \dots + (x_N - y_N)^2]^{1/2},$$
 (1)

generalizing convergence of sequences, limit of functions, and continuity to \mathbb{R}^N is almost trivial. All we need to do is to replace the one-dimensional distance, defined through absolute value, by the N-dimensional distance as defined above.

Definition 1. Let $\{x_n\}$ be a sequence of points in \mathbb{R}^N . A point x_0 is said to be the limit of the sequence if and only if

$$\forall \varepsilon > 0 \quad \exists K \in \mathbb{N} \quad \forall n > K \qquad \| \boldsymbol{x}_n - \boldsymbol{x}_0 \| < \varepsilon.$$
⁽²⁾

Exercise 1. Prove that this is equivalent to $\lim_{n \to \infty} \|\boldsymbol{x}_n - \boldsymbol{x}_0\| = 0$. Note that $\{\|\boldsymbol{x}_n - \boldsymbol{x}_0\|\}$ is a sequence of real numbers.

Exercise 2. Prove that this is equivalent to $\lim_{n \to \infty} x_n^k = x_0^k$ for k = 1, 2, ..., N. Here x_n^k denotes the k-th coordinate of the vector \boldsymbol{x}_n .

The limit of functions is a bit more complicated.

Definition 2. Let $\mathbf{f}: E \subseteq \mathbb{R}^N \mapsto \mathbb{R}^M$. Let $\mathbf{x}_0 \in \mathbb{R}^N$ be such that for any r > 0, $(B(\mathbf{x}_0, r) - \{\mathbf{x}_0\}) \cap E \neq \emptyset$. Then we say $\mathbf{y}_0 \in \mathbb{R}^M$ is the limit of \mathbf{f} at \mathbf{x}_0 , denoted $\mathbf{y}_0 = \lim_{\mathbf{x} \to \mathbf{x}_0} \mathbf{f}(\mathbf{x})$, if and only if

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \boldsymbol{x} \in E \text{ satisfying } 0 < \|\boldsymbol{x} - \boldsymbol{x}_0\| < \delta \qquad \|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}_0\| < \varepsilon.$$
(3)

Exercise 3. Let f(x) be defined on $E: = \{(x, y) \in \mathbb{R}^2 | x > 0, y > 0\}$. For what (x_0, y_0) can the existence of $\lim_{(x, y) \longrightarrow (x_0, y_0)} f(x, y)$ be discussed? Justify your answer.

Example 3. Let $f(x, y, z) := \frac{xyz}{x^2 + y^2 + z^2}$ be define for $(x, y, z) \neq (0, 0, 0)$. We prove that $\lim_{(x,y,z)\to(0,0,0)} = 0$.

Proof. For any $\varepsilon > 0$, we find $\delta > 0$ such that $|f(x, y, z)| < \varepsilon$ whenever $||(x, y, z)|| := (x^2 + y^2 + z^2)^{1/2} < \delta$. Observe

$$|f(x, y, z)| = \left|\frac{x y z}{x^2 + y^2 + z^2}\right| \le \left|\frac{x y}{x^2 + y^2}\right| |z| \le \frac{1}{2} (x^2 + y^2 + z^2)^{1/2}.$$
(4)

Now clearly $\delta = 2 \varepsilon$ does the job.

Exercise 4. Define $f(x, y) := \frac{x y}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$. Study the limiting behavior of f(x, y) as $(x, y) \longrightarrow (0, 0)$.

From definition of limit naturally follows that of continuity.

Definition 4. Let $\mathbf{f}: E \subseteq \mathbb{R}^N \mapsto \mathbb{R}^M$. Let $\mathbf{x}_0 \in E$ be such that for any r > 0, $(B(\mathbf{x}_0, r) - \{\mathbf{x}_0\}) \cap E \neq \emptyset$. Then we say \mathbf{f} is continuous at \mathbf{x}_0 if and only if $\lim_{\mathbf{x}\to\mathbf{x}_0} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0)$.

Example 5. Let $f(x, y, z) = \begin{cases} (x + y + z) \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$. We prove that f is continuous at (0, 0, 0).

Proof. For any $\varepsilon > 0$, take $\delta = \varepsilon/3$. Then for any $||(x, y, z)|| < \delta$, we have either f(x, y, z) = 0 or

$$|f(x, y, z)| \leq |x + y + z| < 3 (x^2 + y^2 + z^2)^{1/2} = \varepsilon.$$
(5)

Thus ends the proof.

Exercise 5. Show that, in the above proof, we can take $\delta = a \varepsilon$ for any $a < \sqrt{3}$. (Hint: Cauchy-Schwarz)

Example 6. Let $E := \{0\} \cup \{1/n | n \in \mathbb{N}\}$. Define $f(x) := \begin{cases} \frac{n}{n+1} & x = \frac{1}{n}, n = 1, 2, 3, \dots \\ 1 & x = 0 \end{cases}$. We prove that f is a continuous function on E.

Proof. One can check that we only need to discuss continuity at x = 0. For any $\varepsilon > 0$, take $\delta = \varepsilon$. Then for any $x \in E \cap (-\delta, \delta)$ we have $x = \frac{1}{n}$ for some $n > \delta^{-1} = \varepsilon^{-1}$. For such x we have

$$|f(x) - f(0)| = \frac{1}{n} < \varepsilon \tag{6}$$

which ends the proof.

Exercise 6. Let $\boldsymbol{f}: E \subseteq \mathbb{R}^N \mapsto \mathbb{R}^M$. Let $\boldsymbol{x}_0 \in \mathbb{R}^N$ be such that for any r > 0, $(B(\boldsymbol{x}_0, r) - \{\boldsymbol{x}_0\}) \cap E \neq \emptyset$. Denote the M components of \boldsymbol{f} by $f_1, ..., f_M$. Then \boldsymbol{f} is continuous at \boldsymbol{x}_0 if and only if $f_1, ..., f_M$ are all continuous at \boldsymbol{x}_0 .

Exercise 7. Define

$$f(x,y) := \begin{cases} \frac{x^3 y}{x^6 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
(7)

Is f(x, y) continuous at (0, 0)? Justify your answer.

Problem 1. In this problem we develop all the major properties of sequence limit.

- a) State and prove convergence results for sum, difference, product of sequences;
- b) Prove that every sequence in \mathbb{R}^N has at most one limit;
- c) Prove that every convergent sequence is bounded;
- d) State and prove Cauchy criterion for sequences in \mathbb{R}^N ;

Problem 2. Let $\boldsymbol{f}: E \mapsto \mathbb{R}^M$. Let $\boldsymbol{x}_0 \in \mathbb{R}^N$ be such that $\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \boldsymbol{f}(\boldsymbol{x})$ can be discussed. Prove that $\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \boldsymbol{f}(\boldsymbol{x})$ exists if and only if for every sequence $\{\boldsymbol{x}_n\} \subseteq E$ satisfying $\boldsymbol{x}_0 \notin \{\boldsymbol{x}_n\}$ and $\lim_{n \longrightarrow \infty} \boldsymbol{x}_n = \boldsymbol{x}_0$, the limit $\lim_{n \longrightarrow \infty} \boldsymbol{f}(\boldsymbol{x}_n)$ exists.

Problem 3. In this problem we develop major properties of continuous functions.

- a) Let $f, g: E \subseteq \mathbb{R}^N \mapsto \mathbb{R}^M$ be conintuous at \boldsymbol{x}_0 . Let $\phi: E \mapsto \mathbb{R}$ be continuous at \boldsymbol{x}_0 . Prove that the following functions are also continuous at $\boldsymbol{x}_0: f \pm g, \phi f, f \cdot g$.
- b) Let $h: \mathbb{R}^M \mapsto \mathbb{R}^K$ be continuous at $f(x_0)$. Prove that the composite function $h \circ f$ is also continuous at x_0 .
- c) Let $\boldsymbol{f}: E \subseteq \mathbb{R}^N \mapsto F \subseteq \mathbb{R}^M$ be invertible with inverse function $\boldsymbol{g}: F \mapsto E$. If \boldsymbol{f} is continuous at \boldsymbol{x}_0 , can we conclude that \boldsymbol{g} is continuous at $\boldsymbol{y}_0 := \boldsymbol{f}(\boldsymbol{x}_0)$? Justify your answer.

Open and closed sets

Finer properties of continuous functions in single variable calculus, such as

 $f: [a, b] \mapsto \mathbb{R}$ reaches its maximum and minimum,

is nontrival to generalize, and requires deeper understanding of topology of \mathbb{R}^N .

Exercise 8. Would you agree that $f: I \mapsto \mathbb{R}$ reaches its maximum and minimum if I is a closed N-dimensional interval and f is continuous? If you do, can you prove it with what we have so far?

Definitions

Definition 7. (Open/closed sets) A set $E \subseteq \mathbb{R}^N$ is open if and only if, for any $x \in E$, there is r > 0 such that the open ball $B(x, r) \subseteq E$.

A set $E \subseteq \mathbb{R}^N$ is closed if and only if E^c is open.

Remark 8. The empty set, \emptyset , is open.¹

Exercise 9. Prove that \mathbb{R}^N is open.

Exercise 10. Let $\boldsymbol{x}_0 \in \mathbb{R}^N$. Prove that the set $\{\boldsymbol{x}_0\}$ is closed.

Example 9. Let $x_0 \in \mathbb{R}^N, r > 0$. Then the open ball $B(x_0, r)$ is open while the closed ball $\overline{B(x_0, r)}$ is closed.

Proof.

• Open ball is open.

Let $\boldsymbol{x} \in B(\boldsymbol{x}_0, r)$. Then by definition $r_1 := \|\boldsymbol{x} - \boldsymbol{x}_0\| < r$. We claim that $B(\boldsymbol{x}, r - r_1) \subseteq B(\boldsymbol{x}_0, r)$. To see this, take any $\boldsymbol{y} \in B(\boldsymbol{x}, r - r_1)$ and check

$$\|\boldsymbol{y} - \boldsymbol{x}_0\| \leq \|\boldsymbol{y} - \boldsymbol{x}\| + \|\boldsymbol{x} - \boldsymbol{x}_0\| < r - r_1 + r_1 = r.$$
 (9)

• Closed ball is closed.

All we need to show is its complement:

$$E := (\overline{B(\boldsymbol{x}_0, r)})^c = \{ \boldsymbol{x} \in \mathbb{R}^N | \| \boldsymbol{x} - \boldsymbol{x}_0 \| > r \}$$

$$(10)$$

is open. Take any $\boldsymbol{x} \in E$ and denote $r_1 := \|\boldsymbol{x} - \boldsymbol{x}_0\| > r$. We show that $B(\boldsymbol{x}, r_1 - r) \subseteq E$. To see this, take any $\boldsymbol{y} \in B(\boldsymbol{x}, r_1 - r)$, we check

$$\|\boldsymbol{y} - \boldsymbol{x}_0\| \ge \|\boldsymbol{x} - \boldsymbol{x}_0\| - \|\boldsymbol{y} - \boldsymbol{x}\| > r_1 - (r_1 - r) = r.$$
 (11)

Thus ends the proof.

Exercise 11. Prove that the sphere $S(\boldsymbol{x}_0, r) := \{\boldsymbol{x} \in \mathbb{R}^N | \|\boldsymbol{x} - \boldsymbol{x}_0\| = r\}$ is closed.

1. This is reasonable. The definition of open sets can be written as

$$(\boldsymbol{x} \in E) \Longrightarrow (\exists r > 0 \quad B(\boldsymbol{x}, r) \subseteq E).$$
(8)

When $E = \varnothing \ \boldsymbol{x} \in E$ is always false, which means the whole statement is true.

Example 10. Let $P \subset \mathbb{R}^N$ be a hyperplane. Then P is closed.

Proof. We need to show that P^c is open. Let the equation for P be $\mathbf{a} \cdot \mathbf{x} = b$. Then

$$P^{c} = \{ \boldsymbol{x} \in \mathbb{R}^{N} | \boldsymbol{a} \cdot \boldsymbol{x} \neq b \}.$$

$$(12)$$

Take any $\boldsymbol{x} \in P^c$. Take any $\boldsymbol{x}_0 \in P$. Then we have

$$r := \frac{|\boldsymbol{a} \cdot (\boldsymbol{x} - \boldsymbol{x}_0)|}{\|\boldsymbol{a}\|} > 0.$$
(13)

We claim that $B(\boldsymbol{x},r) \subset P^{c}$. Let $\boldsymbol{y} \in B(\boldsymbol{x},r)$. We check

$$|\boldsymbol{a} \cdot (\boldsymbol{y} - \boldsymbol{x}_0)| = |\boldsymbol{a} \cdot (\boldsymbol{x} - \boldsymbol{x}_0) + \boldsymbol{a} \cdot (\boldsymbol{y} - \boldsymbol{x})|$$

$$\geqslant |\boldsymbol{a} \cdot (\boldsymbol{x} - \boldsymbol{x}_0)| - |\boldsymbol{a} \cdot (\boldsymbol{y} - \boldsymbol{x})|$$

$$\geqslant ||\boldsymbol{a}|| r - ||\boldsymbol{a}|| ||\boldsymbol{y} - \boldsymbol{x}||$$

$$> ||\boldsymbol{a}|| r - ||\boldsymbol{a}|| r = 0.$$
(14)

Note that we have applied Cauchy-Schwarz inequality.

Exercise 12. For each of the following properties, find one convex set satisfying it. Justify your answers.

- a) Open;
- b) Closed;
- c) Neither open nor closed;
- d) Both open and closed.

Proposition 11. We have the following:

- a) Union of any number of open sets is open;
- b) Intersection of finitely many open sets is open;
- c) Union of finitely many closed sets is closed;
- d) Intersection of any number of closed sets is closed.

Proof. We prove a) and leave the rest as exercises.

Let W a collection of arbitrary number of open sets. We need to show $E := \bigcup_{A \in W} A$ is open. Take any $\boldsymbol{x} \in E$. By definition of union, there is $A \in W$ such that $\boldsymbol{x} \in A$. Since A is open, there is r > 0such that $B(\boldsymbol{x}, r) \subseteq A \subseteq E$. Thus ends the proof.

Exercise 13. Prove b - d).

Exercise 14. Let A be open and B closed. Prove that A - B is open.

Exercise 15. Construct the following counterexamples. Justify your answers.

- a) Find a collection W of open sets such that $\cap_{A \in W} A$ is closed;
- b) Find a collection W of open sets such that $\cap_{A \in W} A$ is open;

- c) Find a collection W of open sets such that $\cap_{A \in W} A$ is neither open nor closed;
- d) Find a collection W of open sets such that $\cap_{A \in W} A$ is both open and closed.

Exercise 16. Often the following definition is given:

Let $x_0 \in \mathbb{R}^n$. $U \subseteq \mathbb{R}^n$ is called a "neighborhood" of x_0 if there is an open ball B such that $x_0 \in B \subseteq U$.

Prove that a set $E \subseteq \mathbb{R}^n$ is open if and only if E is a neighborhood of each of its points.

Exercise 17. Let $E_1, ..., E_N$ be closed (open) sets in \mathbb{R} . Prove that $E_1 \times \cdots \times E_N$ is closed (open) in \mathbb{R}^N .

Problem 4. It is also possible to define open sets through open intervals:

A set $E \subseteq \mathbb{R}^n$ is open if and only if, for any $x \in E$, there an open interval I such that $x \in I \subseteq E$.

Do you think this definition leads to the same topology? Justify your answer.

Problem 5. Let $E \subseteq \mathbb{R}^N$ be open. Prove that

$$E = \bigcup_{F \subset E, F \text{ open}} F. \tag{15}$$

Let $F \subseteq \mathbb{R}^N$ be closed. Prove that

$$F = \bigcap_{G \supseteq F, G \text{ closed}} G.$$
(16)

Limit and continuity in \mathbb{R}^N through open sets

Theorem 12. Let $f: A \subseteq \mathbb{R}^N \mapsto \mathbb{R}^M$. Then f is continuous if and only if

- a) for each open set $U \subseteq \mathbb{R}^M$, $f^{-1}(U) = V \cap A$ for some open set $V \subseteq \mathbb{R}^N$; Or
- b) for each closed set $E \subseteq \mathbb{R}^M$, $f^{-1}(E) = F \cap A$ for some closed set $F \subseteq \mathbb{R}^N$.

Proof. We prove a) and leave b) as exercise.

• "Only if". Let \boldsymbol{f} be continuous. Let $U \subseteq \mathbb{R}^M$ be open. If $\boldsymbol{f}(A) \cap U = \emptyset$, then $\boldsymbol{f}^{-1}(U) = \emptyset = \emptyset \cap A$; Otherwise take any $\boldsymbol{y} = \boldsymbol{f}(\boldsymbol{x}) \subseteq U$. Since U is open there is $\varepsilon = \varepsilon(\boldsymbol{y}) > 0$ such that

$$B(\boldsymbol{y},\varepsilon) \subseteq U \Longrightarrow \forall \boldsymbol{z} \in \mathbb{R}^{M}, \|\boldsymbol{z} - \boldsymbol{y}\| < \varepsilon \text{ then } \boldsymbol{z} \in U.$$
(17)

As \boldsymbol{f} is continuous, there is $\delta = \delta(\boldsymbol{x}) > 0$ such that for all $\|\boldsymbol{z} - \boldsymbol{x}\| < \delta$, $\|\boldsymbol{f}(\boldsymbol{z}) - \boldsymbol{y}\| < \varepsilon$. Clearly we see that this gives $B(\boldsymbol{x}, \delta(\boldsymbol{x})) \cap A \subseteq \boldsymbol{f}^{-1}(B(\boldsymbol{y}, \varepsilon(\boldsymbol{y}))) \subseteq \boldsymbol{f}^{-1}(U)$. Define

$$V := \cup_{\boldsymbol{x} \in \boldsymbol{f}^{-1}(U)} B(\boldsymbol{x}, \delta(\boldsymbol{x})).$$
(18)

Now we have

$$V \cap A = \bigcup_{\boldsymbol{x} \in \boldsymbol{f}^{-1}(U)} (B(\boldsymbol{x}, \delta(\boldsymbol{x})) \cap A) \subseteq \boldsymbol{f}^{-1}(U).$$
(19)

On the other hand cleearly $f^{-1}(U) \subseteq V$. Therefore equality holds.

• "If". Fix any $\boldsymbol{x}_0 \in A$, we show that \boldsymbol{f} is continuous at \boldsymbol{x}_0 . Take any $\varepsilon > 0$, set $U = B(\boldsymbol{f}(\boldsymbol{x}_0), \varepsilon)$. Thus we have an open set $V \subseteq \mathbb{R}^N$ such that $\boldsymbol{f}^{-1}(U) = V \cap A$ or equivalently $\boldsymbol{f}(V \cap A) \subseteq U$. Since V is open, there is $\delta > 0$ such that $B(\boldsymbol{x}_0, \delta) \subseteq V$. Continuity follows as ${\pmb f}(B({\pmb x}_0,\delta)\cap A)\subseteq B({\pmb f}({\pmb x}_0,\varepsilon))$ is equivalent to

$$\forall \boldsymbol{x} \text{ with } \|\boldsymbol{x} - \boldsymbol{x}_0\| < \delta, \qquad \|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0)\| < \varepsilon.$$
(20)

Thus the proof ends.

Exercise 18. From $f^{-1}(U) = V \cap A$, can we conclude $f(V \cap A) = U$? Justify.

Exercise 19. Prove b).