
Convergence of sequences, limit of functions, continuity

With the definition of norm, or more precisely the distance between any two vectors in R
N:

dist(x, y)7 ‖x− y‖7 [(x1− y1)2 +
 + (xN − yN)2]1/2, (1)

generalizing convergence of sequences, limit of functions, and continuity to R
N is almost trivial.

All we need to do is to replace the one-dimensional distance, defined through absolute value, by
the N -dimensional distance as defined above.

Definition 1. Let {xn} be a sequence of points in R
N. A point x0 is said to be the limit of the

sequence if and only if

∀ε > 0 ∃K ∈N ∀n > K ‖xn −x0‖< ε. (2)

Exercise 1. Prove that this is equivalent to limn�∞ ‖xn −x0‖= 0. Note that {‖xn −x0‖} is a sequence of

real numbers.

Exercise 2. Prove that this is equivalent to limn�∞xn
k = x0

k for k = 1, 2, 	 , N . Here xn
k denotes the k-th

coordinate of the vector xn.

The limit of functions is a bit more complicated.

Definition 2. Let f :E ⊆R
N�R

M. Let x0∈R
N be such that for any r>0, (B(x0,r)−{x0})∩E�

∅. Then we say y0∈R
M is the limit of f at x0, denoted y0 = limx→x0

f(x), if and only if

∀ε > 0 ∃δ > 0 ∀x∈E satisfying 0 < ‖x−x0‖< δ ‖f (x)− y0‖< ε. (3)

Exercise 3. Let f(x) be defined on E: ={(x, y) ∈ R
2O x > 0, y > 0}. For what (x0, y0) can the existence of

lim(x,y)� (x0,y0)f(x, y) be discussed? Justify your answer.

Example 3. Let f(x, y, z) 7 x y z

x2 + y2 + z2
be define for (x, y, z) � (0, 0, 0). We prove that

lim(x,y,z)→(0,0,0) = 0.

Proof. For any ε > 0, we find δ > 0 such that |f(x, y, z)| < ε whenever ‖(x, y, z)‖7 (x2 + y2 +
z2)1/2 <δ. Observe

|f(x, y, z)|=
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(x2 + y2 + z2)1/2. (4)

Now clearly δ =2 ε does the job. �

Exercise 4. Define f(x, y)7 x y

x2 + y2
for (x, y)� (0,0). Study the limiting behavior of f(x, y) as (x, y)� (0,0).

From definition of limit naturally follows that of continuity.

Definition 4. Let f :E ⊆R
N�R

M. Let x0∈E be such that for any r >0, (B(x0, r)−{x0})∩E �
∅. Then we say f is continuous at x0 if and only if limx→x0

f (x)= f(x0).

Example 5. Let f(x, y, z)=

{

(x + y + z) sin
1

x
x� 0

0 x =0
. We prove that f is continuous at (0,0,0).
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Proof. For any ε > 0, take δ = ε/3. Then for any ‖(x, y, z)‖< δ, we have either f(x, y, z)= 0 or

|f(x, y, z)|6 |x + y + z |< 3 (x2 + y2 + z2)1/2 = ε. (5)

Thus ends the proof. �

Exercise 5. Show that, in the above proof, we can take δ = a ε for any a < 3
√

. (Hint: Cauchy-Schwarz)

Example 6. Let E7 {0}∪{1/nO n∈N}. Define f(x)7 {

n

n + 1
x=

1

n
, n =1, 2, 3,	

1 x= 0
. We prove

that f is a continuous function on E.

Proof. One can check that we only need to discuss continuity at x=0. For any ε > 0, take δ = ε.
Then for any x∈E ∩ (−δ, δ) we have x=

1

n
for some n > δ−1 = ε−1. For such x we have

|f(x)− f(0)|=
1

n
< ε (6)

which ends the proof. �

Exercise 6. Let f :E ⊆R
N�R

M. Let x0∈R
N be such that for any r >0, (B(x0, r)−{x0})∩E � ∅. Denote

the M components of f by f1,	 , fM. Then f is continuous at x0 if and only if f1,	 , fM are all continuous at x0.

Exercise 7. Define

f(x, y)7 









x3 y

x6 + y2
(x, y)� (0, 0)

0 (x, y)= (0, 0)

. (7)

Is f(x, y) continuous at (0, 0)? Justify your answer.

———————————————————————————————————————

Problem 1. In this problem we develop all the major properties of sequence limit.

a) State and prove convergence results for sum, difference, product of sequences;

b) Prove that every sequence in RN has at most one limit;

c) Prove that every convergent sequence is bounded;

d) State and prove Cauchy criterion for sequences in R
N;

Problem 2. Let f :E�R
M. Let x0∈R

N be such that limx→x0
f(x) can be discussed. Prove that limx→x0

f(x)

exists if and only if for every sequence {xn} ⊆ E satisfying x0 � {xn} and limn�∞xn = x0, the limit

limn�∞f(xn) exists.

Problem 3. In this problem we develop major properties of continuous functions.

a) Let f , g:E ⊆R
N�R

M be conintuous at x0. Let φ:E�R be continuous at x0. Prove that the following

functions are also continuous at x0: f ± g, φ f, f · g.

b) Let h:RM�R
K be continuous at f(x0). Prove that the composite function h◦ f is also continuous at

x0.

c) Let f :E ⊆R
N� F ⊆R

M be invertible with inverse function g:F � E. If f is continuous at x0, can we

conclude that g is continuous at y07 f(x0)? Justify your answer.
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Open and closed sets

Finer properties of continuous functions in single variable calculus, such as

f : [a, b]� R reaches its maximum and minimum,

is nontrival to generalize, and requires deeper understanding of topology of RN.

Exercise 8. Would you agree that f : I�R reaches its maximum and minimum if I is a closed N -dimensional

interval and f is continuous? If you do, can you prove it with what we have so far?

Definitions

Definition 7. (Open/closed sets) A set E ⊆R
N is open if and only if, for any x∈E, there is

r > 0 such that the open ball B(x, r)⊆E.

A set E ⊆RN is closed if and only if Ec is open.

Remark 8. The empty set, ∅, is open.1

Exercise 9. Prove that R
N is open.

Exercise 10. Let x0∈R
N. Prove that the set {x0} is closed.

Example 9. Let x0∈RN , r >0. Then the open ball B(x0, r) is open while the closed ball B(x0, r)
is closed.

Proof.

• Open ball is open.

Let x∈B(x0, r). Then by definition r17 ‖x−x0‖<r. We claim that B(x,r−r1)⊆B(x0, r).
To see this, take any y ∈B(x, r − r1) and check

‖y −x0‖6 ‖y −x‖+ ‖x−x0‖< r − r1 + r1 = r. (9)

• Closed ball is closed.

All we need to show is its complement:

E7 (B(x0, r))c = {x∈RN O ‖x−x0‖>r} (10)

is open. Take any x∈E and denote r17 ‖x−x0‖>r. We show that B(x, r1− r)⊆E. To
see this, take any y ∈B(x, r1− r), we check

‖y −x0‖> ‖x−x0‖− ‖y −x‖>r1− (r1− r)= r. (11)

Thus ends the proof. �

Exercise 11. Prove that the sphere S(x0, r)7 {x∈R
N O ‖x−x0‖= r} is closed.

1. This is reasonable. The definition of open sets can be written as

(x∈E)� (∃r > 0 B(x, r)⊆E). (8)

When E = ∅ x∈E is always false, which means the whole statement is true.
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Example 10. Let P ⊂R
N be a hyperplane. Then P is closed.

Proof. We need to show that P c is open. Let the equation for P be a ·x = b. Then

P c = {x∈R
N O a ·x� b}. (12)

Take any x∈P c. Take any x0∈P . Then we have

r7 |a · (x−x0)|

‖a‖
> 0. (13)

We claim that B(x, r)⊂P c. Let y ∈B(x, r). We check

|a · (y −x0)| = |a · (x−x0)+ a · (y −x)|

> |a · (x−x0)| − |a · (y −x)|

> ‖a‖ r −‖a‖ ‖y −x‖

> ‖a‖ r −‖a‖ r = 0. (14)

Note that we have applied Cauchy-Schwarz inequality. �

Exercise 12. For each of the following properties, find one convex set satisfying it. Justify your answers.

a) Open;

b) Closed;

c) Neither open nor closed;

d) Both open and closed.

Proposition 11. We have the following:

a) Union of any number of open sets is open;

b) Intersection of finitely many open sets is open;

c) Union of finitely many closed sets is closed;

d) Intersection of any number of closed sets is closed.

Proof. We prove a) and leave the rest as exercises.

Let W a collection of arbitrary number of open sets. We need to show E7 ∪A∈WA is open. Take
any x∈E. By definition of union, there is A∈W such that x∈A. Since A is open, there is r > 0
such that B(x, r)⊆A⊆E. Thus ends the proof. �

Exercise 13. Prove b) – d).

Exercise 14. Let A be open and B closed. Prove that A−B is open.

Exercise 15. Construct the following counterexamples. Justify your answers.

a) Find a collection W of open sets such that ∩A∈WA is closed;

b) Find a collection W of open sets such that ∩A∈WA is open;
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c) Find a collection W of open sets such that ∩A∈WA is neither open nor closed;

d) Find a collection W of open sets such that ∩A∈WA is both open and closed.

Exercise 16. Often the following definition is given:

Let x0∈Rn. U ⊆Rn is called a “neighborhood” of x0 if there is an open ball B such that x0∈B⊆U .

Prove that a set E ⊆R
n is open if and only if E is a neighborhood of each of its points.

Exercise 17. Let E1,	 , EN be closed (open) sets in R. Prove that E1×
 ×EN is closed (open) in R
N.

———————————————————————————————————————–

Problem 4. It is also possible to define open sets through open intervals:

A set E ⊆R
n is open if and only if, for any x∈E, there an open interval I such that x∈ I ⊆E.

Do you think this definition leads to the same topology? Justify your answer.

Problem 5. Let E ⊆R
N be open. Prove that

E =∪F ⊆E,F openF . (15)

Let F ⊆R
N be closed. Prove that

F =∩G⊇F ,G closedG. (16)

Limit and continuity in R
N through open sets

Theorem 12. Let f : A ⊆R
N� R

M. Then f is continuous if and only if

a) for each open set U ⊆R
M, f−1(U) =V ∩A for some open set V ⊆R

N; Or

b) for each closed set E ⊆R
M, f−1(E)= F ∩A for some closed set F ⊆R

N.

Proof. We prove a) and leave b) as exercise.

• “Only if”. Let f be continuous. Let U ⊆ R
M be open. If f (A) ∩ U = ∅, then

f−1(U) = ∅ = ∅ ∩ A; Otherwise take any y = f(x) ⊆ U . Since U is open there is
ε = ε(y)> 0 such that

B(y , ε)⊆U� ∀z ∈R
M , ‖z − y‖<ε then z ∈U. (17)

As f is continuous, there is δ=δ(x)>0 such that for all ‖z−x‖<δ, ‖f(z)−y‖<ε. Clearly

we see that this gives B(x, δ(x))∩A⊆ f−1(B(y , ε(y)))⊆ f−1(U). Define

V 7 ∪x∈f−1(U)B(x, δ(x)). (18)

Now we have

V ∩A =∪x∈f−1(U)(B(x, δ(x))∩A)⊆ f−1(U). (19)

On the other hand cleearly f−1(U)⊆V . Therefore equality holds.

• “If”. Fix any x0∈A, we show that f is continuous at x0. Take any ε>0, set U =B(f (x0), ε).
Thus we have an open set V ⊆R

N such that f−1(U)=V ∩A or equivalently f (V ∩A)⊆U .
Since V is open, there is δ > 0 such that B(x0, δ)⊆V .
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Continuity follows as f(B(x0, δ)∩A)⊆B(f(x0, ε)) is equivalent to

∀x with ‖x−x0‖< δ, ‖f (x)− f (x0)‖< ε. (20)

Thus the proof ends. �

Exercise 18. From f−1(U)= V ∩A, can we conclude f(V ∩A)= U? Justify.

Exercise 19. Prove b).
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