
Square matrices and linear transformations

Definition 1. (Linear transformation) A linear function f :RN�R
N is called a “linear transformation”.

Clearly, the matrix representations of linear transformations have the same number of rows and columns.
Such matrices are called “square matrices”.

In this section we restrict ourselves to square matrices. That is A∈R
N×N.

Square matrices

Special square matrices

• Identity matrix.

The most special square matrix is the “identity matrix”.

I =









1 0 
 0
0 1 0� 
 �
0 0 
 1









= (δij) (1)

Here δij =1 when i= j and 0 otherwise. Sometimes the notation In is used to make explicit the size
of the identity matrix.

Lemma 2. For all A∈R
N×N,

I A= A; AI = A (2)

Proof. Direct calculation. �

• Permutation matrix.

A permutation matrix P is a matrix whose entries are only 0 and 1, and along each row or column
there is exactly one 1.

Any permutation matrix can be obtained from the identity matrix I through switching rows or
columns finitely many times.

Exercise 1. Check that P =





0 1 0

0 0 1

1 0 0



 is a permutation matrix. Take a vector x∈R
3 and calculate P x, then take

any 3× 3 matrix A and calculate P A and A P . What do you observe?

Exercise 2. Let P , Q be permutation matrices. Prove that P Q is still a permutation matrix.

• Diagonal matrix.

A “diagonal matrix” is of the form

D =









d1 0 
 0
0 d2 0� 
 �
0 0 
 dN









(3)

Diagonal matrices are often denoted as D = diag(d1,	 , dN).
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Exercise 3. Let D1, D2∈R
N×N be diagonal matrices. Prove that D1±D2, D1 D2 are still diagonal matrices.

• Upper/lower triangular matrix.

Two still less special classes of matrices are upper triangulr and lower triangular matrices.

U =









u11 u12 
 u1N

0 u22 u2N� 
 �
0 0 
 uNN









, L =









l11 0 
 0
l21 l22 0� 
 �
lN1 lN2 
 lNN









(4)

that is uij = 0 whenever i > j and lij = 0 whenever i < j.

Exercise 4. Prove: The transpose of an upper triangular matrix is lower triangular and vice versa.

Exercise 5. Let U , V ∈R
n×n be upper triangular. Prove that U V is still upper triangular. Find out the relation

between the uii, vii and the i-i diagonal entry of U V .

Is there a similar claim for lower triangular matrices? Can you prove it?

Exercise 6. Let U , L ∈ R
N×N be upper and lower triangular respectively. Show through an example that U L

and L U may not be triangular.

• Orthogonal matrix.

A matrix O∈R
N×N is said to be orthogonal if and only if OT O = I where OT is the transpose of O.

Exercise 7. Write

O = ( a1 
 aN ) (5)

as a row of columns. Prove that O is orthogonal if and only if

1. ‖ai‖= 1 for i = 1, 2,	 , N .

2. ai⊥aj for all i� j.

Exercise 8. Let x, y∈R
N. Let O ∈R

N ×N be orthogonal. Then

(O x) · (O y) = x · y. (6)

In particular, ‖O x‖= ‖x‖.

Exercise 9. Let O ∈R
N×N be such that ‖O x‖= ‖x‖ for any x∈R

N. Prove that O is orthogonal.

Theorem 3. (LDU decomposition) Let A∈R
N×N. Then

A= PL D U (7)

where P is a permutation matrix, L is a lower triangular matrix, D is a diagonal matrix, U is an upper
triangular matrix. Furthermore all the main diagonal entries of L, U are 1. That is lii = uii = 1 for i = 1,
2,	 , N.

Proof. See any numerical linear algebra or matrix theory textbook. If you want to prove it yourself, review
the process of Gaussian elimination and try to write each step as a matrix multiplication. �

Theorem 4. (Polar decomposition) Let A ∈ R
N×N. Then there are orthogonal matrices O1, O2 and

diagonal matrix D with non-negative diagonal entries, such that A= O1 D O2.
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Inverse

Definition 5. (Inverse matrix) Let A ∈R
N×N. If there is a matrix B ∈R

N×N such that A B = I and
B A= I, then B is called the “inverse” of A and denoted A−1.

Those matrices that have inverses are called “invertible” or “non-singular”. The rest are called “singular”.

Exercise 10. Let A∈R1×1. When is A invertible? Find its inverse.

Exercise 11. Prove that the identity matrix I is invertible. Find its inverse.

Exercise 12. Let D be diagonal. When is it invertible? Find its inverse.

Exercise 13. Find sufficient and necessary condition for an upper triangular matrix to be invertible. Prove that the inverse

of an upper triangular matrix is lower triangular.

Exercise 14. Let O ∈R
N×N be an orthongal matrix. Prove that its inverse O−1 is also orthogonal.

Lemma 6. Let A, B ∈R
N×N be invertible. Then AB is also invertible and (AB)−1 =B−1 A−1.

Proof. Check

(AB) (B−1 A−1)= A (B B−1)A−1 = AIA−1 = AA−1 = I; (8)

(B−1 A−1) (A B)= B−1 (A−1 A)B = B−1 I B = B−1 B = I. (9)

Therefore the matrix B−1 A−1 is the inverse of the matrix AB. �

Exercise 15. Let A∈RN×N. Prove that A is invertible if and only if AT is invertible. Furthermore,

(AT )−1 = (A−1)T . (10)

Notation 7. In the following we will use the simpler notation A−T to denote the above matrix (AT )−1 =
(A−1)T.

Exercise 16. Let A∈R
N×N. Assume there is B ∈R

N×N such that A B = I. Prove that B A = I.

Theorem 8. A matrix A∈R
N×N is singular if and only if there is a column vector x (or a row vector yT)

such that

A x =0 (or yT A =0) (11)

Determinant

Theorem 9. For each n∈N, there is a unique function θ:RN×N� R such that

a) θ is linear in each column of A;

b) θ
(

Ã
)

=−θ(A) if Ã is obtained from A by interchanging two columns.

c) θ(I)=1.
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Proof. Omitted. But see the following for the main idea of the proof. �

Exercise 17. Let A = (a)∈R
1×1. Prove that θ(A)= a.

Example 10. Let A =
(

a11 a12

a21 a22

)

. Then θ(A) = a11 a22− a12 a21..

Proof. By linearity of θ with respect to each column, we have

θ

((

a11 a12

a21 a22

))

= θ

((

a11 a12

0 a22

))

+ θ

((

0 a12

a21 a22

))

= a11 θ

((

1 a12

0 a22

))

+ a21 θ

((

0 a12

1 a22

))

= a11a12 θ

((

1 1
0 0

))

+ a11 a22 θ

((

1 0
0 1

))

+a21 a12 θ

((

0 1
1 0

))

+ a21 a22 θ

((

0 0
1 1

))

. (12)

By property b) we see that the first and fourth terms are 0, and

θ

((

0 1
1 0

))

=−θ

((

1 0
0 1

))

. (13)

Finally by property c) we have θ(A)= a11 a22− a12 a21 as desired. �

Exercise 18. Let A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



. Then θ(A) = a11 a22 a33 + a12 a23 a31 + a13 a32 a21 − a13 a22 a31 − a12 a21 a33 −

a23 a32 a11.

Definition 11. The unique function in Theorem 9 is called the determinant. The traditional notation is
det (A).

Exercise 19. Let A∈R
N×N. Denote by a1,	 ,aN the n columns. Then if there are i, j such that ai=aj, then det(A)=0.

Exercise 20. Let A∈R
N×N. Denote by a1,	 , aN the N columns. If there are c1,	 , cN ∈R such that

c1 a1 +
 + cN aN =0∈R
N ×N , (14)

then det (A)= 0.

Exercise 21. Use the above exercise to prove that detA = det Ã where Ã is obtained from A by replace column j with

the sum of column j and column i, but keep other columns intact.

Exercise 22. Prove that if D =diag(d1,	 , dN) is diagonal, then det (D)= d1 d2
 dN.

Exercise 23. Prove that if P is a permutation matrix, then |det (P )|= 1.

Exercise 24. Prove that for upper triangular matrices, det (U) =u11
 uNN.

Theorem 12. Let A, B ∈R
N×N. Prove that det (AB)= (det (A)) (det (B)).

Proof. Consider the function θ:RN×N� R by

θ(X)7 det (A X). (15)
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Then θ satisfies a),b) in Theorem 9 and with c) replaced by θ(I) = r = det (A). The same method proving
Theorem 9 gives θ(X) = r det (X)= (det (A)) (det (X)) which ends the proof. �

Remark 13. The above proof is from Introduction to Differential Equations by Michael E. Taylor, AMS
2011.

Exercise 25. Let A∈R
N×N. Prove det (AT )=det (A).

Exercise 26. Use the above exercise to prove det (O)= 1 for any orthogonal matrix O.

Theorem 14. Let A∈RN×N. Then A is invertible if and only if det (A)� 0.

Theorem 15. Let A∈R
N×N and let PL DU be its LDU decomposition. Then

|det (A)|= |det (D)|. (16)

Linear transformations

Lemma 16. The linear transformation with matrix representation I is the identity transformation i(x)=x.

Lemma 17. Let f :RN�R
N be a linear transformation that is invertible. Then its inverse g is also a linear

transformation.

Exercise 27. Prove the above lemma.

Theorem 18. Let f : RN � R
N be a linear transformation. Then f is invertible if and only if its matrix

representation A is invertible. Furthermore the inverse transformation g has representation A−1.

Proof.

• “If”. If A is invertible, then we define the linear transformation g through

g(x)7 A−1 x. (17)

Now it is easy to check that

(f ◦ g)(x)= x, (g ◦ f)(y)= y (18)

for any x, y ∈Rn.

• “Only if”. Assume f is invertible. Let g be its inverse. Since g is a linear transformation, it has a
matrix representation B. Thus we have

AB = B A = I (19)

which means A is invertible and its inverse is B. �
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