
Taylor expansion

Taylor polynomial (expansion with Peano form of the remainder)

Definition 1. Let f(x) be kth differentiable on (a, b) for k =1, 2,	 , n−1 and f (n)(x0) exists for x0∈ (a, b).
Then the polynomial

Pn(x)7 f(x0) + f ′(x0) (x−x0) +
f ′′(x0)

2
(x− x0)

2 +
 +
f (n)(x0)

n!
(x−x0)

n (1)

is called the nth degree Taylor polynomial of f(x) at x0.

Exercise 1. Is it enough to assume only the existence of f ′(x0),	 , f(n)(x0)?

Exercise 2. (What is special about Pn?) Prove that for any other nth degree polynomial Qn(x),

lim
x� x0

f(x)−Pn(x)

f(x)− Qn(x)
= 0. (2)

The difference Rn(x): =f(x)−Pn(x) is called the “remainder”. This is equivalent to

lim
x� x0

Rn(x)

(x− x0)n
= 0. (3)

Exercise 3. Prove that (3) and (2) are equivalent.

(Hint: We need to show

lim
Rn(x)

Rn(x)+ Qn(x)
=0 for every nth degree polynomial Qn� lim

Rn(x)
(x− x0)n

= 0. (4)� is relatively easy: Let (x − x0)k be the lowest order term of Qn. We simply divide both numerator and denominator

by (x−x0)
k and then take limit. For� , take Qn(x)=(x−x0)

n, and try to prove the conclusion using definition (ε-δ stuff).

Exercise 4. Let n∈N. Let f(x) be such that there exists a nth degree polynomial Qn(x) satisfying

f(x)= Qn(x)+ Rn(x) (5)

with Rn(x)/(x − x0)
n� 0 as x� x0. Can we conclude the existence of f(k)(x0), k = 1, 2, 	 , n? Can we conclude the

existence of δ >0 such that f(k)(x) exists for k=1,2,	 , n−1 for all x∈ (x0−δ,x0+δ)? (Hint: Take your nowhere continuous

function and multiply by (x− x0)
n+1)

Remark 2. Note that all the above is obtained only assuming the existence of f (n)(x0) at one single point
x0, that is the differentiability of f (n−1)(x) at one single point. If we assume more, we will be able to obtain
more precise formulas for the remainder Rn(x).

Taylor expansion with Lagrange form (and other forms) of the remainder

Theorem 3. (Lagrange form of the remainder) Let f (k)(x) be continuous on [a, b] for all k = 1, 2,	 ,

n. Let f (n+1)(x) exist on (a, b). Then there is ξ ∈ (a, b) such that

Rn(x)=
f (n+1)(ξ)

(n + 1)!
(x− x0)

n+1. (6)

Remark 4. This gives us more information than Rn(x)/(x−x0)
n� 0.
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Remark 5. It should be clear that ξ depends on x.

Exercise 5. Prove the theorem as follows. Fix x, x0. Define

F (t)= f(t)−

[

f(x0)+ f ′(x0) (t− x0)+
 +
f(n)(x0)

n!
(t− x0)

n

]

; G(t)= (t− x0)
n+1. (7)

Apply Cauchy’s MVT n times to
F (t)−F (x0)

G(t)−G(x0)
.

Exercise 6. Prove the theorem as follows. Fix x, x0. Define

F (t)= f(x)−

[

f(t) + f ′(t) (x− t)+
 +
f(n)(t)

n!
(x − t)n

]

; G(t) = (x − t)n+1. (8)

Then apply Cauchy’s MVT to
F (x0)− F (x)

G(x0)− G(x)
.

Exercise 7. (Cauchy form of the remainder) Taking G(t)=x− t to prove the following Cauchy form of the remainder:

Rn(x)=
f(n+1)(ξ)

n!
(x − ξ)n (x− x0)=

f(n+1)(x0 + θ (x −x0))
n!

(1− θ)n (x − x0)
n+1 (9)

where θ =
ξ − x0

x −x0

∈ (0, 1).

Exercise 8. (Schlomilich-Roche form of the remainder) Taking G(t)= (x − t)p to prove

Rn(x)=
f(n+1)(ξ)

n! p
(x − ξ)n−p+1 (x− x0)

p =
f(n+1)(x0 + θ (x− x0))

n! p
(1− θ)n+1−p (x − x0)

n+1 (10)

where θ =
ξ − x0

x −x0

∈ (0, 1).

Example 6. Estimate the remainder of the expansion of ln (1+ x) at x= 0 to nth degree for x∈ (−1, 1).

Solution. If we write the remainder in its Lagrange form:

|Rn|=
1

n + 1

∣

∣

∣

∣

x

ξ

∣

∣

∣

∣

n+1

(11)

For which we have ξ between 1 and 1+x. Thus when x>−1/2, we can get a good estimate to show Rn� 0;
On the other hand when x <−1/2 this strategy won’t work.

In this case we can use the Cauchy form:

|Rn|=
1

|1 + θ x|n+1
(1− θ)n xn+1. (12)

Exercise 9. Fill in all the details for the above solution.

Exercise 10. What do you think is the reason that we restrict our consideration to x∈ (−1, 1)?

Taylor expansion with integral form of the remainder

Theorem 7. (Integral form of the remainder) Assume f (n+1)(t) is integrable on (a, b), x0, x∈ (a, b).
Then

Rn(x) =
1

n!

∫

x0

x

f (n+1)(t) (x− t)n dt. (13)
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Exercise 11. Prove the above theorem using mathematical induction and integration by parts.

Remark 8. The advantage of the integral form of remainder over all previous types of remainder is that

everything involved: f (n+1), (x− t)n are differentiable and thus can be subject to further operations. On the
other hand, the dependence of ξ on x is quite mysterious, there is even no guarantee that ξ(x) is continuous.
However, see the following exercise.

Exercise 12. Let f : (a, b)�R and x0∈ (a,b). Assume that f(n+2)(x) exists and is continuous on (a, b) with f(n+1)(x0)� 0.

Let

f(x)= Pn(x)+
f (n+1)(ξ)
(n + 1)!

(x− x0)
n+1 (14)

be the Taylor expansion. Define ξ(x0)= x0. Prove that ξ is differentiable at x0 and ξ ′(x)= 1/(n + 2).
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