Limit of sequences and functions

Understand the definitions

Let $f(x): \mathbb{R} \to \mathbb{R}$ be a function, then we have the following definitions for its limiting behavior:

• $\lim_{x \to a} f(x) = L \iff \forall \varepsilon > 0 \ \exists \delta > 0$ such that

$$0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \varepsilon.$$
⁽¹⁾

• $\lim_{x \to a} f(x) = \infty \iff \forall M \in \mathbb{R} \ \exists \delta > 0$ such that

$$0 < |x-a| < \delta \Longrightarrow f(x) > M.$$
⁽²⁾

• $\lim_{x \to -\infty} f(x) = L \iff \forall \varepsilon > 0 \ \exists M \in \mathbb{R}$ such that

$$x < M \Longrightarrow |f(x) - L| < \varepsilon.$$
(3)

• ...

Exercise 1. Let $f(x): \mathbb{R} \to \mathbb{R}$ be a function satisfying any one of the following. What can we conclude about f?

- a) $\exists \delta > 0, \forall \varepsilon > 0, 0 < |x a| < \delta \Longrightarrow |f(x) L| < \varepsilon;$
- b) $\exists \delta > 0, \forall M \in \mathbb{R}, 0 < |x a| < \delta \Longrightarrow f(x) > M;$
- ${\rm c}) \ \exists M>0, \, \forall \varepsilon > 0, \ x < M \Longrightarrow |f(x)-L| < \varepsilon.$

We further define one-sided limits:

• $\lim_{x \to a+} f(x) = L \iff \forall \varepsilon > 0 \ \exists \delta > 0$ such that

$$0 < x - a < \delta \Longrightarrow |f(x) - L| < \varepsilon.$$
⁽⁴⁾

• $\lim_{x \to a^-} f(x) = -\infty \iff \forall M \in \mathbb{R} \ \exists \delta > 0$ such that

$$-\delta < x - a < 0 \Longrightarrow f(x) < M. \tag{5}$$

• ...

There are also definitions for a sequence of real numbers $\{x_n\}$:

• $\lim_{n \to \infty} x_n = L \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ such that

$$n > N \Longrightarrow |x_n - L| < \varepsilon. \tag{6}$$

• $\lim_{n \to \infty} x_n = \infty \iff \forall M \in \mathbb{R} \ \exists N \in \mathbb{N}$ such that

$$n > N \Longrightarrow x_n > M. \tag{7}$$

• ...

These definitions all look different, yet at the same time similar. Indeed, the intuition of "limit" is simply

As one quantity approaches a certain value, a related quantity approaches another certain value.

The question now is, can we understand them in a unified framework? The answer is yes. All we need to do is to give precise meaning to "approach" in various situations. In fact, given any set – not necessarily \mathbb{R} or \mathbb{N} – we can give precise meaning to something "approaching an element of the set" through defining a so-called "topological structure" on this set.

Topology

Definition 1. (Topological structure) Let X be a set. A topological structure on X is the collection Σ of subsets of X satisfying

- *i.* $X \in \Sigma$; $\emptyset \in \Sigma$;
- ii. The union of any number of elements in Σ is an element of Σ ;
- iii. The intersection of finitely many elements in Σ is an element of Σ .

The elements in Σ are called "open sets" in this particular topology (X, Σ) .

Remark 2. It should be emphasized that a topology is a pair (X, Σ) . Different topological structures can be put on the same set X to form different topologies.

Exercise 2. Let

$$\Sigma_1 = \{ \text{open sets } \subseteq \mathbb{R} \}; \tag{8}$$

$$\Sigma_2 = \{ \text{closed sets } \subseteq \mathbb{R} \}; \tag{9}$$

 $\Sigma_3 = \{ \text{half-open-half-closed intervals } [a, b) \subseteq \mathbb{R} \}$ (10)

$$\Sigma_4 = \{A \mid A \subseteq \mathbb{R}\} \tag{11}$$

$$\Sigma_5 = \{ \emptyset, \mathbb{R} \}. \tag{12}$$

Consider (\mathbb{R}, Σ_i) , i = 1, 2, 3, 4, 5. Which pairs are topologies and which are not? Justify your answers.

Exercise 3. Let X be any set. Let $\Sigma_1 = \{\emptyset, X\}, \Sigma_2 = \{A \mid A \subseteq X\}$. Prove that $(X, \Sigma_1), (X, \Sigma_2)$ are topologies.

Remark 3. The two topologies in the above exercise are called "trivial topology" and "discrete topology" respectively. The usual topology on \mathbb{R} is called its "natural topology".

Definition 4. (Limit) Let (X_1, Σ_1) and (X_2, Σ_2) be two topologies. Let $f: X_1 \mapsto X_2$. Let $a \in X_1$ and $L \in X_2$. Then we say $\lim_{x \longrightarrow a} f(x) = L$ if for every $B \in \Sigma_2$ such that $L \in B$, there is $A \in \Sigma_1$ satisfying $a \in A$ and $f(A - \{a\}) \subseteq B$, that is, for any $x \in A, x \neq a, f(x) \in B$. **Exercise 4.** Let $f: \mathbb{R} \to \mathbb{R}$. Let $a, L \in \mathbb{R}$. Recall that we define $\lim_{x \to a} af(x) = L \iff \forall \varepsilon > 0 \ \exists \delta > 0$ such that

$$0 < |x-a| < \delta \Longrightarrow |f(x) - L| < \varepsilon.$$
⁽¹³⁾

What is the topology we assign to \mathbb{R} here?

Exercise 5. Let $f: \mathbb{R} \to \mathbb{R}$ be an arbitrary function and $a \in \mathbb{R}$ be arbitrary. We assign the domain \mathbb{R} with the open interval topology and the range \mathbb{R} with the trivial topology. Prove that $\lim_{x \to a} af(x) = L$ for any $L \in \mathbb{R}$.

Remark 5. The above obviously violated a fundamental theorem – If limit exists then it is unique – that we learned in single variable calculus. The reason is that, the trivial topology cannot tell different points apart. In topological terminology, \mathbb{R} with trivial topology is not "Hausdorff". For a quick tour of topology, see Chapter 1 of *Manifolds, Tensor Analysis, and Applications* by Ralph Abraham, Jerrold E. Marsden and Tudor Ratiu.

Exercise 6. Study limit of $f: \mathbb{R} \mapsto \mathbb{R}$ when the domain-range topologies are of the other eight possibilities (each can be assigned the natural (open-interval), trivial, discrete topology).

Exercise 7. We know that a sequence $\{x_n\}$ can be identified with a function $f: \mathbb{N} \mapsto \mathbb{R}$ through $f(n):=x_n$. What topologies on $\mathbb{N} \cup \{\infty\}$ and \mathbb{R} would give us the usual definition of $\lim_{n \to \infty} x_n = L$?

Inherited topology

Theorem 6. (Inherited topology) Let (X, Σ) be a topology. Let $Y \subset X$. Define $\Sigma_1 = \{A \cap Y | A \in \Sigma\}$. Then (Y, Σ_1) is a topology.

Exercise 8. Prove the theorem.

Exercise 9. Prove that the inherited topology on \mathbb{N} as subset of \mathbb{R} with natural topology is its discrete topology.

Exercise 10. Consider the subset $(-\infty, a] \subset \mathbb{R}$. Equip \mathbb{R} with its natural topology. What is the inherited topology? What kind of limit results from this topology, at the point a?

Exercise 11. Let $E \subseteq \mathbb{R}$. Let \mathbb{R} be equipped with its natural topology. Let E be equipped with the inherited topology. Consider $f: E \mapsto \mathbb{R}$. For what kind of points $a \in E$ can we define the existence of $\lim_{x \to a} f(x)$?

Topology on \mathbb{R}^N

Think: What is the natural topology on \mathbb{R}^N ?