MATH 117 FALL 2014 MIDTERM 3 REVIEW PROBLEMS

- Midterm 3 coverage:
 - Lectures 26, 29 36 and the exercises therein. (Note that Integration is not included)
 - Required sections in Dr. Bowman's book and my 314 notes.
 - Homeworks 6 8.
 - The exercises below are to help you on the concepts and techniques. The exam problems may or may not look like them.
- Exercises.

Exercise 1. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. (Sol:¹)

Exercise 2. Prove by ε - δ : sign $(x) := \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$ is continuous at $a \neq 0$ but discontinuous at a = 0.

Exercise 3. Prove by ε - δ : $f(x) = \begin{cases} 1/x^2 & x \neq 0 \\ 0 & x = 0 \end{cases}$ is continuous at $a \neq 0$ and discontinuous at a = 0. (Sol:³)

Exercise 4. Prove or disprove: f(x) is continuous at $a \in \mathbb{R}$ if and only if for every $\{x_n\}$ with $\lim_{n\to\infty} x_n = a$, there holds $\lim_{n\to\infty} f(x_n) = f(a)$. (Sol:⁴)

Exercise 5. Let $f(x) := \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Is f(x) a continuous function (that is continuous at every a in its domain)? Justify your claim. (Sol:⁵)

Exercise 6. Let $f(x) := \begin{cases} x + x^2 \cos \frac{1}{x^4} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Prove that f is differentiable everywhere on \mathbb{R} and calculate f'(x). (Sol:⁶)

1. Since the series is positive, the partial sums $s_n := \sum_{k=1}^n \frac{1}{k^2}$ is increasing. All we need to show is that it has an upper bound. Let *n* be arbitrary. We have

$$\sum_{k=1}^{n} \frac{1}{k^2} < 1 + \sum_{k=2}^{n} \frac{1}{(k-1)k} = 2 - \frac{1}{n} < 2.$$
(1)

2. When $a \neq 0$, let $\varepsilon > 0$ be arbitrary. Set $\delta = |a|$. Then for all $|x - a| < \delta x$ has the same sign as a, consequently $|\operatorname{sign}(x) - \operatorname{sign}(a)| = 0 < \varepsilon$. When a = 0, let $\delta > 0$ be arbitrary, take $x \in (0, \delta)$. Then we have $|\operatorname{sign}(x) - \operatorname{sign}(0)| = 1 \ge 1$.

3. Let $\epsilon \neq 0$. Let $\epsilon > 0$ be arbitrary. Set $\delta < \min\left\{\frac{|a|}{2}, \frac{|a|^3 \epsilon}{8}\right\}$. Then for every $0 < |x - a| < \delta$, we have

$$|f(x) - f(a)| = \left|\frac{1}{x^2} - \frac{1}{a^2}\right| = |x - a| \frac{|x + a|}{|x|^2 |a|^2} < \delta \frac{2|a|}{|a|^4/4} = \delta \frac{8}{|a|^3} < \varepsilon.$$

$$\tag{2}$$

At a = 0, let $\delta > 0$ be arbitrary. Set $x := \min\{1, \delta\}$. Then we have

$$|f(x) - f(a)| = \left|\frac{1}{x^2} - 0\right| = \frac{1}{|x|^2} \ge 1.$$
(3)

4. The claim is true. "If': We need to show $\lim_{x\to a} f(x) = f(a)$. We know that this is equivalent to for every $\{x_n\}$ satisfying $\lim_{n\to\infty} x_n = a, x_n \neq a$, there holds $\lim_{n\to\infty} f(x_n) = f(a)$. This obviously holds as the assumption says for every $\{x_n\}$ satisfying $\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} f(x_n) = f(a)$. "Only if': Let $\{x_n\}$ be a arbitrary sequence with $\lim_{n\to\infty} x_n = a$. Let $\varepsilon > 0$ be arbitrary. As f is continuous at a, there is $\delta > 0$ such that when $|x - a| < \delta, |f(x) - f(a)| < \varepsilon$. Now as $\lim_{n\to\infty} x_n = a$, there is $N \in \mathbb{N}$ such that when $n \ge N$, $|x_n - a| < \delta$. Therefore when $n \ge N$, we have $|f(x_n) - f(a)| < \varepsilon$, that is $\lim_{n\to\infty} f(x_n) = f(a)$.

5. Yes. At $x \neq 0$ the continuity follows from the continuity of x, sin x and 1/x. At x=0, we have by Squeeze $\lim_{x\to 0} f(x)=0$. 6. As $x, x^2, \cos x$ are differentiable everywhere, and $\frac{1}{x^4}$ is differentiable at every $x \neq 0$, f(x) is differentiable at every $x \neq 0$, and

$$f'(x) = 1 + 2x\cos\frac{1}{x^4} + 4\frac{1}{x^3}\sin\frac{1}{x^4}.$$
(4)

At 0, we have

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x + x^2 \cos\frac{1}{x^4}}{x} = \lim_{x \to 0} \left[1 + x \cos\frac{1}{x^4} \right] = 1$$
(5)

so f'(0) = 1.

Exercise 7. Let $f(x) := \begin{cases} x + x \cos \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Prove that f is differentiable everywhere except at x = 0. (Sol:⁷)

• More exercises

Exercise 8. Prove that $\sum_{n=1}^{\infty} \frac{\cos n^2}{n^2}$ is convergent. (Sol:⁸)

Exercise 9. Let $a_n > 0$. Prove the following:

- If $\limsup_{n \to \infty} a_n^{1/n} < 1$, then $\sum_{n=1}^{\infty} a_n$ converges;
- If $\limsup_{n \to \infty} a_n^{1/n} > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

(Sol: 9)

Exercise 10. Let $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ be convergent. Prove that $\sum_{n=1}^{\infty} a_n^2$ is convergent.

Exercise 11. Let $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n, \sum_{n=1}^{\infty} c_n$ satisfy

i. $\forall n \in \mathbb{N}, a_n \leqslant b_n \leqslant c_n;$

ii. $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} c_n$ converge to the same sum.

Prove or disprove: $\forall n \in \mathbb{N}, a_n = b_n = c_n$.

Exercise 12. Let f(x) be continuous at $a \in \mathbb{R}$. Let g(x) be such that $\forall x \in \mathbb{R}, |g(x)| < |f(x)|$. Does it follow that g(x) is continuous at a? Justify your claim. (Sol: 10)

Exercise 13. Prove by induction that all polynomials are continuous at every $a \in \mathbb{R}$.

Exercise 14. A function $f: A \mapsto \mathbb{R}$ $(A \subseteq \mathbb{R})$ is uniformly continuous on $B \subseteq A$ if and only if

- $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in B, |x x'| < \delta, \qquad |f(x) f(x')| < \varepsilon.$ $\tag{7}$
- a) Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ that is continuous but not uniformly continuous on \mathbb{R} .
- b) Write down the working negation of uniform continuity.
- c) Prove that if $f: A \mapsto \mathbb{R}$ is continuous on $[a, b] \subseteq A$, then it is uniformly continuous on [a, b]. (Sol:¹¹)

Exercise 15. Prove that the equation $x^2 - 4\sin x + 1 = 0$ has at least two solutions in \mathbb{R} .

Exercise 16. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable at $a \in \mathbb{R}$. Prove that $\lim_{h \to 0^+} \frac{f(a+h) - f(a-h)}{2h} = f'(a)$. (Sol:¹²)

7. That f(x) is differentiable whenever $x \neq 0$ is proved similarly to the previous problem. At 0, we have $\frac{f(x) - f(0)}{x - 0} = 1 + \cos \frac{1}{x}$ for $x \neq 0$. Now take $x_n = \frac{1}{2n\pi}$ and $y_n = \frac{1}{(2n+1)\pi}$. We have $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$, $x_n, y_n \neq 0$ but $\lim_{n \to \infty} \left(1 + \cos \frac{1}{x_n}\right) = 2$, $\lim_{n \to \infty} \left(1 + \cos \frac{1}{y_n}\right) = 0 \neq 2$. Therefore the limit $\lim_{x \to 0} \left(1 + \cos \frac{1}{x}\right)$ does not exist and consequently f is not differentiable at 0.

8. We prove it's Cauchy. Let $\varepsilon > 0$ be arbitrary. Set $N > \varepsilon^{-1}$. Then for every $m > n \ge N$, we have

$$\sum_{k=n+1}^{m} \left. \frac{\cos k^2}{k^2} \right| \leqslant \sum_{k=n+1}^{m} \frac{1}{k^2} < \sum_{k=n+1}^{m} \frac{1}{(k-1)k} = \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k} \right) < \frac{1}{n} \leqslant \frac{1}{N} < \varepsilon.$$
(6)

9. We prove ii. Let $L:=\limsup_{n\to\infty}a_n^{1/n}>1$. Then by definition of limsup there holds $\sup\left\{a_n^{1/n}, a_{n+1}^{1/(n+1)}, \ldots\right\} \ge L$ for all $n \in \mathbb{N}$. By definition of sup we see that for every $n \in \mathbb{N}$, there is $k \ge n$ such that $a_k^{1/k} \ge 1$ and consequently $a_k \ge 1$. This implies $\lim_{n\to\infty}a_n=0$ does not hold and the conclusion follows. For i try to prove that there is r < 1, c > 0 such that $a_n \le cr^n$ for all $n \in \mathbb{N}$.

10. No. For example $f(x) \equiv 2$ and $g(x) = \operatorname{sign}(x)$.

11. Assume the contrary. Then there is $\varepsilon > 0$ such that for every $\delta > 0$ there are x_{δ} , y_{δ} satisfying $|x_{\delta} - y_{\delta}| < \delta$ but $|f(x_{\delta}) - f(y_{\delta})| \ge \varepsilon$. Taking $\delta = 1/n$ for every $n \in \mathbb{N}$ we obtain two sequences $\{x_n\}, \{y_n\}$ such that $x_n - y_n \longrightarrow 0$ and $|f(x_n) - f(y_n)| \ge \varepsilon$. Thanks to Bolzano-Weierstrass there is a convergent subsequence $\{x_{n_k}\}$. Let $c := \lim_{k \to \infty} x_{n_k} \in [a, b]$. Then we have $\lim_{k \to \infty} f(x_{n_k}) = f(c)$. On the other hand as $x_n - y_n \to 0$ so does $x_{n_k} - y_{n_k}$ and consequently $\lim_{k \to \infty} y_{n_k} = c$ and $\lim_{k \to \infty} f(y_{n_k}) = f(c)$. But $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon$ for all $k \in \mathbb{N}$. Contradiction.

12. Let $\varepsilon > 0$ be arbitrary. As f'(a) exists, there is $\delta > 0$ such that for all $0 < |x-a| < \delta$, $\left|\frac{f(x) - f(a)}{x-a} - L\right| < \varepsilon$. Now let $0 < h < \delta$ be arbitrary. We see that $0 < |(a+h) - a| < \delta$, $0 < |(a-h) - a| < \delta$. Consequently $\left|\frac{f(a+h) - f(a)}{h} - L\right|$, $\left|\frac{f(a-h) - a}{-h} - L\right| < \varepsilon$. By triangle inequality we see $\left|\frac{f(a+h) - f(a-h)}{2h} - L\right| = \frac{1}{2} \left| \left(\frac{f(a+h) - f(a)}{h} - L\right) + \left(\frac{f(a) - f(a-h)}{h} - L\right) \right| < \varepsilon$.

Exercise 17. Prove or disprove: Let $f: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$ satisfy $\lim_{h \to 0^+} \frac{f(a+h) - f(a-h)}{2h} = L \in \mathbb{R}$, then f is differentiable at a with f'(a) = L. (Hint:¹³)

Exercise 18. Prove that $f(x) = 4x + x^3 + 2\sin x$ is strictly increasing on \mathbb{R} .

Problems.

Problem 1. Let $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ be convergent. Prove or disprove: $\sum_{n=1}^{\infty} \max\{a_n, b_n\}$ is convergent; $\sum_{n=1}^{\infty} \min\{a_n, b_n\}$ is convergent. (Hint:¹⁴)

Problem 2. Prove or disprove: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous with $\limsup_{x \to +\infty} f(x) = A$, $\liminf_{x \to -\infty} f(x) = B$. Then for every s between A, B, there is $c \in \mathbb{R}$ such that f(c) = s. (Hint:¹⁵)

Problem 3. Prove the Intermediate Value Theorem as follows:

- a) Define $A := \{x | f(x) < s\}$, let $c_1 := \sup A$.
- b) Define $B := \{x | f(x) > s\}$, let $c_2 := \inf B$.

In general does there hold $c_1 = c_2$? (Hint:¹⁶)

Problem 4. Find a function f(x) that is differentiable everywhere on \mathbb{R} but f'(x) is unbounded on (-1, 1). Justify your claim.

Problem 5. How many solutions are there for $\ln(x+1) = x^2$? Justify your answer. (Hint:¹⁷)

Problem 6. Find the exact number of solutions for $x^2 - 4\sin x + 1 = 0$. Justify your answer. (Hint:¹⁸) **Problem 7.** Prove

$$\forall x \in \left(-\frac{1}{2}, \frac{1}{2}\right), \qquad 3 \arccos x - \arccos(3x - 4x^3) = \pi.$$
(8)

 $(Hint:^{19})$

13. The claim is false. Consider f(x) = |x|.

14. Both are false. Consider $a_n = \frac{(-1)^n}{n}$, $b_n = \frac{(-1)^{n+1}}{n+1}$.

15. Apply IVT.

16. By definition of c_1 we have $f(x) \ge s$ for all $x > c_1$. If $c_1 > s$ there is $\delta > 0$ such that f(x) > s for all $c_1 - \delta < x \le c_1$. So $\sup A \le c_1 - \delta$ contradiction. If $c_1 < s$ we show similarly $\sup A \ge c_1 + \delta$ for some $\delta > 0$.

17. 2. There is obviously no solution for x < 0. x = 0 is a solution. Let $f(x) := x^2 - \ln(1+x)$. We have $f'(x) = 2x - \frac{1}{1+x}$. We see that f'(x) = 0 has exactly one solution in $(0, \infty)$. Denote it by x_0 . On $(0, x_0)$ f'(x) < 0 so f is strictly decreasing and on (x_0, ∞) f(x) is strictly increasing.

18. To show that there are only two solutions, let $f(x) := x^2 - 4 \sin x + 1$. First it is clear that there is no solution on $[-\pi, 0]$. For $x < -\pi$ we have $x^2 - 4 \sin x + 1 \ge \pi^2 + 1 - 4 > 0$ so there is no solution on $(-\infty, -\pi)$ either. On $[0, \infty)$ we have $f'(x) = 2x - 4 \cos x$ which has exactly one solution and therefore f(x) = 0 has exactly two solutions on $[0, \infty)$ and thus on $(-\infty, \infty)$.

19. Try to show derivative is 0.