Math 117 Fall 2014 Midterm 3 Review Problems

- Midterm 3 coverage:
- Lectures 26, 29-36 and the exercises therein. (Note that Integration is not included)
- Required sections in Dr. Bowman's book and my 314 notes.
- Homeworks 6-8.
- The exercises below are to help you on the concepts and techniques. The exam problems may or may not look like them.
- Exercises.

Exercise 1. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent. (Sol: ${ }^{1}$)
Exercise 2. Prove by $\varepsilon-\delta: \operatorname{sign}(x):=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right.$ is continuous at $a \neq 0$ but discontinuous at $a=0$. (Sol: ${ }^{2}$)
Exercise 3. Prove by $\varepsilon-\delta: f(x)=\left\{\begin{array}{ll}1 / x^{2} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is continuous at $a \neq 0$ and discontinuous at $a=0$. (Sol: ${ }^{3}$)
Exercise 4. Prove or disprove: $f(x)$ is continuous at $a \in \mathbb{R}$ if and only if for every $\left\{x_{n}\right\}$ with $\lim _{n \rightarrow \infty} x_{n}=$ a, there holds $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a) .\left(\mathrm{Sol}:{ }^{4}\right)$
Exercise 5. Let $f(x):=\left\{\begin{array}{ll}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Is $f(x)$ a continuous function (that is continuous at every a in its domain)? Justify your claim. (Sol: ${ }^{5}$)
Exercise 6. Let $f(x):=\left\{\begin{array}{ll}x+x^{2} \cos \frac{1}{x^{4}} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Prove that f is differentiable everywhere on \mathbb{R} and calculate $f^{\prime}(x) .\left(\mathrm{Sol}:{ }^{6}\right)$

1. Since the series is positive, the partial sums $s_{n}:=\sum_{k=1}^{n} \frac{1}{k^{2}}$ is increasing. All we need to show is that it has an upper bound. Let n be arbitrary. We have

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k^{2}}<1+\sum_{k=2}^{n} \frac{1}{(k-1) k}=2-\frac{1}{n}<2 \tag{1}
\end{equation*}
$$

2. When $a \neq 0$, let $\varepsilon>0$ be arbitrary. Set $\delta=|a|$. Then for all $|x-a|<\delta x$ has the same sign as a, consequently $|\operatorname{sign}(x)-\operatorname{sign}(a)|=0<\varepsilon$. When $a=0$, let $\delta>0$ be arbitrary, take $x \in(0, \delta)$. Then we have $|\operatorname{sign}(x)-\operatorname{sign}(0)|=1 \geqslant 1$.
3. Let $a \neq 0$. Let $\varepsilon>0$ be arbitrary. Set $\delta<\min \left\{\frac{|a|}{2}, \frac{|a|^{3} \varepsilon}{8}\right\}$. Then for every $0<|x-a|<\delta$, we have

$$
\begin{equation*}
|f(x)-f(a)|=\left|\frac{1}{x^{2}}-\frac{1}{a^{2}}\right|=|x-a| \frac{|x+a|}{|x|^{2}|a|^{2}}<\delta \frac{2|a|}{|a|^{4} / 4}=\delta \frac{8}{|a|^{3}}<\varepsilon \tag{2}
\end{equation*}
$$

At $a=0$, let $\delta>0$ be arbitrary. Set $x:=\min \{1, \delta\}$. Then we have

$$
\begin{equation*}
|f(x)-f(a)|=\left|\frac{1}{x^{2}}-0\right|=\frac{1}{|x|^{2}} \geqslant 1 \tag{3}
\end{equation*}
$$

4. The claim is true. "If": We need to show $\lim _{x \rightarrow a} f(x)=f(a)$. We know that this is equivalent to for every $\left\{x_{n}\right\}$ satisfying $\lim _{n \rightarrow \infty} x_{n}=a, x_{n} \neq a$, there holds $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$. This obviously holds as the assumption says for every $\left\{x_{n}\right\}$ satisfying $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$. "Only if": Let $\left\{x_{n}\right\}$ be a arbitrary sequence with $\lim _{n \rightarrow \infty} x_{n}=a$. Let $\varepsilon>0$ be arbitrary. As f is continuous at a, there is $\delta>0$ such that when $|x-a|<\delta,|f(x)-f(a)|<\varepsilon$. Now as $\lim _{n \rightarrow \infty} x_{n}=a$, there is $N \in \mathbb{N}$ such that when $n \geqslant N,\left|x_{n}-a\right|<\delta$. Therefore when $n \geqslant N$, we have $\left|f\left(x_{n}\right)-f(a)\right|<\varepsilon$, that is $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.
5. Yes. At $x \neq 0$ the continuity follows from the continuity of $x, \sin x$ and $1 / x$. At $x=0$, we have by Squeeze $\lim _{x \rightarrow 0} f(x)=0$.
6. As $x, x^{2}, \cos x$ are differentiable everywhere, and $\frac{1}{x^{4}}$ is differentiable at every $x \neq 0, f(x)$ is differentiable at every $x \neq 0$, and

$$
\begin{equation*}
f^{\prime}(x)=1+2 x \cos \frac{1}{x^{4}}+4 \frac{1}{x^{3}} \sin \frac{1}{x^{4}} \tag{4}
\end{equation*}
$$

At 0, we have

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x+x^{2} \cos \frac{1}{x^{4}}}{x}=\lim _{x \rightarrow 0}\left[1+x \cos \frac{1}{x^{4}}\right]=1 \tag{5}
\end{equation*}
$$

so $f^{\prime}(0)=1$.

Exercise 7. Let $f(x):=\left\{\begin{array}{ll}x+x \cos \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Prove that f is differentiable everywhere except at $x=0$. (Sol: ${ }^{7}$)

- More exercises

Exercise 8. Prove that $\sum_{n=1}^{\infty} \frac{\cos n^{2}}{n^{2}}$ is convergent. (Sol: ${ }^{8}$)
Exercise 9. Let $a_{n}>0$. Prove the following:

- If limsup ${ }_{n \rightarrow \infty} a_{n}^{1 / n}<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges;
- If limsup ${ }_{n \rightarrow \infty} a_{n}^{1 / n}>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(Sol: ${ }^{9}$)
Exercise 10. Let $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ be convergent. Prove that $\sum_{n=1}^{\infty} a_{n}^{2}$ is convergent.
Exercise 11. Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}, \sum_{n=1}^{\infty} c_{n}$ satisfy
i. $\forall n \in \mathbb{N}, a_{n} \leqslant b_{n} \leqslant c_{n}$;
ii. $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ converge to the same sum.

Prove or disprove: $\forall n \in \mathbb{N}, a_{n}=b_{n}=c_{n}$.
Exercise 12. Let $f(x)$ be continuous at $a \in \mathbb{R}$. Let $g(x)$ be such that $\forall x \in \mathbb{R},|g(x)|<|f(x)|$. Does it follow that $g(x)$ is continuous at a ? Justify your claim. (Sol: ${ }^{10}$)

Exercise 13. Prove by induction that all polynomials are continuous at every $a \in \mathbb{R}$.
Exercise 14. A function $f: A \mapsto \mathbb{R}(A \subseteq \mathbb{R})$ is uniformly continuous on $B \subseteq A$ if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall x, x^{\prime} \in B,\left|x-x^{\prime}\right|<\delta, \quad\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon . \tag{7}
\end{equation*}
$$

a) Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ that is continuous but not uniformly continuous on \mathbb{R}.
b) Write down the working negation of uniform continuity.
c) Prove that if $f: A \mapsto \mathbb{R}$ is continuous on $[a, b] \subseteq A$, then it is uniformly continuous on $[a, b]$. (Sol: ${ }^{11}$)

Exercise 15. Prove that the equation $x^{2}-4 \sin x+1=0$ has at least two solutions in \mathbb{R}.
Exercise 16. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be differentiable at $a \in \mathbb{R}$. Prove that $\lim _{h \rightarrow 0+} \frac{f(a+h)-f(a-h)}{2 h}=f^{\prime}(a)$. (Sol: ${ }^{12}$)
7. That $f(x)$ is differentiable whenever $x \neq 0$ is proved similarly to the previous problem. At 0 , we have $\frac{f(x)-f(0)}{x-0}=1+\cos \frac{1}{x}$ for $x \neq 0$. Now take $x_{n}=\frac{1}{2 n \pi}$ and $y_{n}=\frac{1}{(2 n+1) \pi}$. We have $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=0, x_{n}, y_{n} \neq 0$ but $\lim _{n \rightarrow \infty}\left(1+\cos \frac{1}{x_{n}}\right)=2$, $\lim _{n \rightarrow \infty}\left(1+\cos \frac{1}{y_{n}}\right)=0 \neq 2$. Therefore the $\operatorname{limit} \lim _{x \rightarrow 0}\left(1+\cos \frac{1}{x}\right)$ does not exist and consequently f is not differentiable at 0 .
8. We prove it's Cauchy. Let $\varepsilon>0$ be arbitrary. Set $N>\varepsilon^{-1}$. Then for every $m>n \geqslant N$, we have

$$
\begin{equation*}
\left|\sum_{k=n+1}^{m} \frac{\cos k^{2}}{k^{2}}\right| \leqslant \sum_{k=n+1}^{m} \frac{1}{k^{2}}<\sum_{k=n+1}^{m} \frac{1}{(k-1) k}=\sum_{k=n+1}^{m}\left(\frac{1}{k-1}-\frac{1}{k}\right)<\frac{1}{n} \leqslant \frac{1}{N}<\varepsilon \tag{6}
\end{equation*}
$$

9. We prove ii. Let $L:=\limsup _{n \rightarrow \infty} a_{n}^{1 / n}>1$. Then by definition of limsup there holds $\sup \left\{a_{n}^{1 / n}, a_{n+1}^{1 /(n+1)}, \ldots\right\} \geqslant L$ for all $n \in \mathbb{N}$. By definition of sup we see that for every $n \in \mathbb{N}$, there is $k \geqslant n$ such that $a_{k}^{1 / k} \geqslant 1$ and consequently $a_{k} \geqslant 1$. This implies $\lim _{n \rightarrow \infty} a_{n}=0$ does not hold and the conclusion follows. For i try to prove that there is $r<1, c>0$ such that $a_{n} \leqslant c r^{n}$ for all $n \in \mathbb{N}$.
10. No. For example $f(x) \equiv 2$ and $g(x)=\operatorname{sign}(x)$.
11. Assume the contrary. Then there is $\varepsilon>0$ such that for every $\delta>0$ there are x_{δ}, y_{δ} satisfying $\left|x_{\delta}-y_{\delta}\right|<\delta$ but $\left|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right| \geqslant \varepsilon$. Taking $\delta=1 / n$ for every $n \in \mathbb{N}$ we obtain two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that $x_{n}-y_{n} \longrightarrow 0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geqslant \varepsilon$. Thanks to Bolzano-Weierstrass there is a convergent subsequence $\left\{x_{n_{k}}\right\}$. Let $c:=\lim _{k \rightarrow \infty} x_{n_{k}} \in[a, b]$. Then we have $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(c)$. On the other hand as $x_{n}-y_{n} \rightarrow 0$ so does $x_{n_{k}}-y_{n_{k}}$ and consequently $\lim _{k \rightarrow \infty} y_{n_{k}}=c$ and $\lim _{k \rightarrow \infty} f\left(y_{n_{k}}\right)=f(c)$. But $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geqslant \varepsilon$ for all $k \in \mathbb{N}$. Contradiction.
12. Let $\varepsilon>0$ be arbitrary. As $f^{\prime}(a)$ exists, there is $\delta>0$ such that for all $0<|x-a|<\delta,\left|\frac{f(x)-f(a)}{x-a}-L\right|<\varepsilon$. Now let $0<h<\delta$ be arbitrary. We see that $0<|(a+h)-a|<\delta, 0<|(a-h)-a|<\delta$. Consequently $\left|\frac{f(a+h)-f(a)}{h}-L\right|,\left|\frac{f(a-h)-a}{-h}-L\right|<\varepsilon$. By triangle inequality we see $\left|\frac{f(a+h)-f(a-h)}{2 h}-L\right|=\frac{1}{2}\left|\left(\frac{f(a+h)-f(a)}{h}-L\right)+\left(\frac{f(a)-f(a-h)}{h}-L\right)\right|<\varepsilon$.

Exercise 17. Prove or disprove: Let $f: \mathbb{R} \mapsto \mathbb{R}$ and $a \in \mathbb{R}$ satisfy $\lim _{h \rightarrow 0+} \frac{f(a+h)-f(a-h)}{2 h}=L \in \mathbb{R}$, then f is differentiable at a with $f^{\prime}(a)=L$. (Hint: ${ }^{13}$)
Exercise 18. Prove that $f(x)=4 x+x^{3}+2 \sin x$ is strictly increasing on \mathbb{R}.

- Problems.

Problem 1. Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be convergent. Prove or disprove: $\sum_{n=1}^{\infty} \max \left\{a_{n}, b_{n}\right\}$ is convergent; $\sum_{n=1}^{\infty} \min \left\{a_{n}, b_{n}\right\}$ is convergent. (Hint: ${ }^{14}$)
Problem 2. Prove or disprove: Let $f: \mathbb{R} \mapsto \mathbb{R}$ be continuous with $\limsup _{x \rightarrow+\infty} f(x)=A$, $\liminf _{x \rightarrow-\infty} f(x)=B$. Then for every s between A, B, there is $c \in \mathbb{R}$ such that $f(c)=s$. (Hint: ${ }^{15}$)
Problem 3. Prove the Intermediate Value Theorem as follows:
a) Define $A:=\{x \mid f(x)<s\}$, let $c_{1}:=\sup A$.
b) Define $B:=\{x \mid f(x)>s\}$, let $c_{2}:=\inf B$.

In general does there hold $c_{1}=c_{2}$? (Hint: ${ }^{16}$)
Problem 4. Find a function $f(x)$ that is differentiable everywhere on \mathbb{R} but $f^{\prime}(x)$ is unbounded on $(-1,1)$. Justify your claim.
Problem 5. How many solutions are there for $\ln (x+1)=x^{2}$? Justify your answer. (Hint: ${ }^{17}$)
Problem 6. Find the exact number of solutions for $x^{2}-4 \sin x+1=0$. Justify your answer. (Hint: ${ }^{18}$)
Problem 7. Prove

$$
\begin{equation*}
\forall x \in\left(-\frac{1}{2}, \frac{1}{2}\right), \quad 3 \arccos x-\arccos \left(3 x-4 x^{3}\right)=\pi \tag{8}
\end{equation*}
$$

(Hint: ${ }^{19}$)
13. The claim is false. Consider $f(x)=|x|$.
14. Both are false. Consider $a_{n}=\frac{(-1)^{n}}{n}, b_{n}=\frac{(-1)^{n+1}}{n+1}$.
15. Apply IVT.
16. By definition of c_{1} we have $f(x) \geqslant s$ for all $x>c_{1}$. If $c_{1}>s$ there is $\delta>0$ such that $f(x)>s$ for all $c_{1}-\delta<x \leqslant c_{1}$. So $\sup A \leqslant c_{1}-\delta$ contradiction. If $c_{1}<s$ we show similarly $\sup A \geqslant c_{1}+\delta$ for some $\delta>0$.
17. 2. There is obviously no solution for $x<0 . x=0$ is a solution. Let $f(x):=x^{2}-\ln (1+x)$. We have $f^{\prime}(x)=2 x-\frac{1}{1+x}$. We see that $f^{\prime}(x)=0$ has exactly one solution in $(0, \infty)$. Denote it by x_{0}. On $\left(0, x_{0}\right) f^{\prime}(x)<0$ so f is strictly decreasing and on $\left(x_{0}, \infty\right) f(x)$ is strictly increasing.
18. To show that there are only two solutions, let $f(x):=x^{2}-4 \sin x+1$. First it is clear that there is no solution on $[-\pi, 0]$. For $x<-\pi$ we have $x^{2}-4 \sin x+1 \geqslant \pi^{2}+1-4>0$ so there is no solution on $(-\infty,-\pi)$ either. On [$0, \infty$) we have $f^{\prime}(x)=2 x-4 \cos x$ which has exactly one solution and therefore $f(x)=0$ has exactly two solutions on $[0, \infty)$ and thus on $(-\infty, \infty)$.
19. Try to show derivative is 0 .

