MATH 117 FALL 2014 MIDTERM 2 REVIEW PROBLEMS

- Midterm 2 coverage: .
 - Lectures 12 25 and the exercises therein. 0
 - Required sections in Dr. Bowman's book and my 314 notes. 0
 - Homeworks 3 5. 0
 - The exercises below are to help you on the concepts and techniques. The exam prob-0 lems may or may not look like them.
 - Pages 7, 8, 10 of the Midterm Review of Math 314, 2013 may also help. 0
- Exercises.

Exercise 1. Prove the following by definition.

$$\lim_{n \to \infty} \frac{n^2 + 1}{n^3} = 0; \quad \lim_{n \to \infty} \frac{2^n}{n!} = 0; \quad \lim_{n \to \infty} \frac{n^3 + 1}{5 n^2 + 7} = +\infty; \tag{1}$$

 $(Sol:^1)$

Exercise 2. Prove the following by definition.

$$\lim_{x \to 1} \frac{x^2 + 1}{x^3 + 1} = 1; \quad \lim_{x \to 5^-} \frac{x^2 + 1}{x - 5} = -\infty; \quad \lim_{x \to 1} \sqrt{x + 3} = 2.$$
(2)

 $(Sol:^2)$

Exercise 3. Disprove the following by definition.

$$\lim_{n \to \infty} \frac{1}{n} = 2; \qquad \lim_{x \to 3} \frac{x^2 + 1}{x^2 + x + 5} = 2.$$
(3)

 $(Sol:^{3};^{4})$

Exercise 4. Prove the following by Squeeze.

$$\lim_{n \to \infty} \frac{\sin n^3}{n^3} = 0; \qquad \lim_{n \to \infty} \frac{\sqrt{n^2 - 7}}{\sqrt{n^2 + 1}} = 1.$$
(4)

 $(Sol:^{5};^{6})$

 $\frac{2}{n} \left(\frac{2^{n-1}}{(n-1)!} \right) \leqslant \frac{2}{n} \leqslant \frac{2}{N} < \varepsilon.$

Prove $\lim_{n \to \infty} \frac{n^3 + 1}{5n^2 + 7} = +\infty$. Let M > 0 be arbitrary. Take N > 12 M. Then for every $n \ge N$, we have $\frac{n^3 + 1}{5n^2 + 7} \ge \frac{n^3}{5n^2 + 7n^2} = \frac{n}{12} \ge \frac{N}{12} > M$.

2. Prove $\lim_{x\to 5-} \frac{x^2+1}{x-5} = -\infty$. Let M < 0 be arbitrary. Take $\delta = -\frac{1}{M}$. Then for every $5 - \delta < x < 5$, we have $\frac{x^2+1}{x-5} = -\frac{x^2+1}{5-x} < -\frac{x^2+1}{\delta} < -\frac{1}{\delta} = M$. Prove $\lim_{x\to 5-} \frac{x^2+1}{x-5} = -\infty$. Let M < 0 be arbitrary. Take $\delta = -\frac{1}{M}$. Then for every $5 - \delta < x < 5$, we have $\frac{x^2+1}{x-5} < \frac{1}{x-5} < \frac{1}{x$

 $\frac{1}{-\delta} = M.$

 $\sqrt{4-|h|} \geqslant \sqrt{4-8\left|h\right|+4\left|h^2\right|} = 2-2\left|h\right| > 2-\varepsilon. \text{ Therefore for } 0 < |x-1| < \delta \text{ we have } |\sqrt{x+3}-2| < \varepsilon.$

3. Disprove $\lim_{n\to\infty} \frac{1}{n} = 2$. Take $\varepsilon = 1$. Let $N \in \mathbb{N}$ be arbitrary. Take $n = \max\{N, 1\}$. Then $n \ge N$ and $n \ge 1$. This leads to $\left|\frac{1}{n}-2\right| \ge 1$ and the proof ends.

4. Disprove $\lim_{x\to 3} \frac{x^2+1}{x^2+x+5} = 2$. Take $\varepsilon = 1$. Let $\delta > 0$ be arbitrary. Take x = 3 + r with $0 < |r| < \min\{\delta, 3\}$. Then $0 < |x-3| < \delta$ and x > 0. We have $\left|\frac{x^2+1}{x^2+x+5} - 2\right| = \left|\frac{x^2+2x+9}{x^2+x+5}\right| = \left|1 + \frac{x+4}{x^2+x+5}\right| = 1 + \frac{x+4}{x^2+x+5} \ge 1$ since x > 0. The proof ends.

5. Prove $\lim_{n\to\infty} \frac{\sin n^3}{n^3} = 0$. We have $-\frac{1}{n^3} \leqslant \frac{\sin n^3}{n^3} \leqslant \frac{1}{n^3}$. As $\lim_{n\to\infty} \left(-\frac{1}{n^3}\right) = \lim_{n\to\infty} \frac{1}{n^3} = 0$ the conclusion follows from Squeeze.

 $[\]boxed{\begin{array}{c}1. \text{ Prove } \lim_{n \to \infty} \frac{n^2 + 1}{n^3} = 0. \text{ Let } \varepsilon > 0 \text{ be arbitrary. Take } N > \frac{2}{\varepsilon}. \text{ Then for every } n \ge N, \text{ we have } \left|\frac{n^2 + 1}{n^3} - 0\right| = \frac{n^2 + 1}{n^3} \leqslant \frac{n^2 + n^2}{n^3} = \frac{2}{n} \leqslant \frac{2}{N} < \varepsilon; \\ \text{Prove } \lim_{n \to \infty} \frac{2^n}{n!} = 0. \text{ Let } \varepsilon > 0 \text{ be arbitrary. Take } N \in \mathbb{N} \text{ such that } N > \frac{2}{\varepsilon}. \text{ Then for every } n \ge N, \text{ we have } \left|\frac{2^n}{n!} - 0\right| = \frac{2^n}{n!} = \frac$

Exercise 5. Calculate the following limits. Justify your results.

$$\lim_{n \to \infty} \frac{(-4)^n + 6^n}{5^{n+1} + 6^{n+1}}; \qquad \lim_{n \to \infty} \frac{n}{(2n^3 + n)^{1/3}}; \qquad \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + 1}}.$$
 (5)

 $(Sol;^7;^8;^9)$

Exercise 6. Let $a_n = (-1)^n - \frac{1}{n}$. Calculate $\sup_{n \in \mathbb{N}} a_n$, $\inf_{n \in \mathbb{N}} a_n$, $\limsup_{n \to \infty} a_n$, $\liminf_{n \to \infty} a_n$. Justify your answers. (Sol: 10)

More exercises

Exercise 7. Let a > 0, b > 1. Prove the following.

$$\lim_{n \to \infty} \frac{n}{2^n} = 0; \quad \lim_{n \to \infty} \frac{1}{n^a} = 0; \quad \lim_{n \to \infty} a^{1/n} = 1; \quad \lim_{n \to \infty} \frac{n^a}{b^n} = 0.$$
(6)

Exercise 8.

- a) Let a > 0 and $x_n = 1 + a + \frac{a^2}{2} + \frac{a^3}{2!} + \dots + \frac{a^n}{2!}$. Prove $\{x_n\}$ is Cauchy. (Sol:¹¹)
- b) Let $b \in \mathbb{R}$ and $x_n = 1 + b + b^2 + \dots + b^n$. Find all b such that $\{x_n\}$ is Cauchy. Justify,
- c) Let $x_n = \frac{\sin 1}{1} + \dots + \frac{\sin n^2}{n^2}$. Prove that $\{x_n\}$ is Cauchy.

Exercise 9. Given $\lim_{x\to 0+} \frac{\sin x}{x} = 1$. Prove $\lim_{x\to 0-} \frac{\sin x}{x} = 1$.

Exercise 10. Let $\{a_n\}$ be a sequence satisfying $\lim_{n\to\infty} a_n = a$ for some real number $a \neq 0$. Prove that there is $N \in \mathbb{N}$ such that for all $n \ge N$, $a_n \ne 0$.

Exercise 11. Let $\{a_n\}, \{b_n\}$ be sequences with $\lim_{n\to\infty} a_n = -\infty, \lim_{n\to\infty} b_n = -\infty$. Prove or disprove:

(Sol: ¹², ¹³)
$$\lim_{n \to \infty} (a_n b_n) = +\infty; \qquad \lim_{n \to \infty} (a_n + b_n) = -\infty; \qquad \lim_{n \to \infty} \frac{a_n}{b_n} = 1.$$
(7)

 $\frac{\sqrt{n^2-7}}{\sqrt{n^2+1}} = 1. \text{ Note that the sequence is only defined for } n \ge 3. \text{ We have clearly } \frac{\sqrt{n^2-7}}{\sqrt{n^2+1}} < 1. \text{ On the other hand we have } \frac{\sqrt{n^2-7}}{\sqrt{n^2+1}} > \frac{\sqrt{n^2-7}}{\sqrt{(n+1)^2}} = \frac{\sqrt{(n-\sqrt{7})(n+\sqrt{7})}}{n+1} > \frac{n-\sqrt{7}}{n+1}. \text{ The conclusion now follows from Squeeze.}$ $7. \lim_{n \to \infty} \frac{(-4)^n + 6^n}{5^{n+1} + 6^{n+1}}. \text{ We have } \frac{(-4)^n + 6^n}{5^{n+1} + 6^{n+1}} = \frac{1}{6} \cdot \frac{\left(\frac{-4}{6}\right)^n + 1}{\left(\frac{5}{6}\right)^{n+1} + 1}. \text{ The limit is } \frac{1}{6} \text{ after we prove that } \lim_{n \to \infty} r^n = 0 \text{ if } |r| < 1. \text{ Let } r^n = r^n = r^n + r^n = 0.$

 $\varepsilon > 0$ be arbitrary. Take $N > \log_r \varepsilon$. Then for every $n \ge N$, $r^n < r^N = \varepsilon$.

8. $\lim_{n \to \infty} \frac{n}{(2n^3+n)^{1/3}}$. We have $\frac{n}{(2n^3+n)^{1/3}} < \frac{n}{(2n^3)^{1/3}} = \frac{1}{2^{1/3}}$. On the other hand $\frac{n}{(2n^3+n)^{1/3}} > \frac{n}{[2(n+1)^3]^{1/3}} = \frac{1}{2^{1/3}} \frac{n}{n+1}$. Thus the limit is $2^{-1/3}$ thanks to Squeeze.

9. $\lim_{x \to +\infty} \frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+1}}$. We prove that the limit is 1. We have $\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+1}} = \frac{\sqrt{1+x^{-1/2}}}{\sqrt{1+x^{-1}}}$. It suffices to prove $\lim_{x \to +\infty} \sqrt{1 + x^{-1/2}} = \lim_{x \to +\infty} \sqrt{1 + x^{-1}} = 1.$ As the proofs are almost identical I will only prove the first one here. Let $\varepsilon > 0$ be arbitrary. Take $R > \varepsilon^{-2}$. Then for every x > R we have $\sqrt{1 + x^{-1/2}} < \sqrt{1 + R^{-1/2}} < \sqrt{1 + \varepsilon} < \sqrt{(1 + \varepsilon)^2} < \sqrt{1 + \varepsilon} < \sqrt{(1 + \varepsilon)^2} < \sqrt{1 + \varepsilon} < \sqrt{(1 + \varepsilon)^2} < \varepsilon^{-1}$. $1 + \varepsilon$. Consequently $\left| \sqrt{1 + x^{-1/2}} - 1 \right| < \varepsilon$. We are done.

10. $\sup_{n \in \mathbb{N}} a_n = 1$. To prove this, first we clearly have $(-1)^n - \frac{1}{n} < 1$ so 1 is an upper bound. On the other hand for any b < 1, taking n = 2k with $k > \frac{1}{1-b}$ we have $(-1)^n - \frac{1}{n} = 1 - \frac{1}{2k} > 1 - \frac{1-b}{2} = b + \frac{1-b}{2} > b$ so b is not an upper bound. Therefore $\sup_{n \in \mathbb{N}} a_n = 1.$

$$\begin{split} \sup_{n \to \infty} a_n &= 1. \\ \text{limsup}_{n \to \infty} a_n &= 1. \\ \text{To prove this we estimate sup} \{a_n, a_{n+1}, \ldots\}. \\ \text{Clearly } \forall n \in \mathbb{N}, a_n < 1 \text{ therefore sup} \{a_n, \ldots\} \leqslant 1. \\ \text{On the other hand, } \forall n \in \mathbb{N}, a_{2n} &= 1 - \frac{1}{2n} \in \{a_n, a_{n+1}, \ldots\} \text{ thus sup} \{a_n, \ldots\} \geqslant 1 - \frac{1}{2n}. \\ \text{Now it follows from Squeeze that limsup}_{n \to \infty} a_n &= 1. \\ \text{inf}_{n \in \mathbb{N}} a_n &= -2. \\ \text{First} \forall n \in \mathbb{N}, (-1)^n - \frac{1}{n} \geqslant -1 - 1 = -2 \text{ so } -2 \text{ is a lower bound.} \\ a_1 &= -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_1 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_1 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_1 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_1 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_1 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_1 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_2 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_2 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_2 = -1 - 1 = -2 < b. \\ \text{Therefore } -2 \text{ is the greatest lower bound.} \\ \text{limit} &= a_1 = -1 - 1 = -2 < b = -2 \text{ for a finite set of a set of$$

 $\liminf_{n\to\infty} a_n = -1$. The proof is similar to the limsup one.

11. Let $\varepsilon > 0$ be arbitrary. Let $n_0 > 2$ a. Denote $c := \frac{a^{n_0}}{n_0!}$. Then we have for every $n > n_0$, $\frac{a^n}{n!} = \frac{a^{n-n_0}}{n(n-1)\cdots(n_0+1)} \frac{a^{n_0}}{n_0!} < c\left(\frac{1}{2}\right)^{n-n_0}$. Now take $N \in \mathbb{N}$ such that $c\left(\frac{1}{2}\right)^{N-n_0} < \varepsilon$. Let $m > n \ge N$ be arbitrary. We have $|x_m - x_n| = \left|\frac{a^{n+1}}{(n+1)!} + \cdots + \frac{a^m}{m!}\right| < \infty$ $c \left| \left(\frac{1}{2}\right)^{n+1-n_0} + \dots + \left(\frac{1}{2}\right)^{m-n_0} \right| = c \left(\frac{1}{2}\right)^{n-n_0} \left[\frac{1}{2} + \dots + \left(\frac{1}{2}\right)^{m-n}\right] < c \left(\frac{1}{2}\right)^{n-n_0} \times 2 < c \left(\frac{1}{2}\right)^{N-n_0} < \varepsilon.$

12. Prove $\lim_{n\to\infty} (a_n b_n) = +\infty$. Let M > 0 be arbitrary. As $\lim_{n\to\infty} a_n = -\infty$, there is $N_1 > 0$ such that $n \ge N_1 \Longrightarrow a_n < -M^{1/2}$; Similarly there is $N_2 \in \mathbb{N}$ such that $n \ge N_2 \Longrightarrow b_n < -M^{1/2}$. Take $N = \max\{N_1, N_2\}$. Now for every $n \ge N$ we have $a_n b_n > (-M^{1/2}) \cdot (-M^{1/2}) = M$.

Exercise 12. Let $\{a_n\}$ be a sequence satisfying $\forall n \in \mathbb{N}, a_n \in [0, 1]$. Further assume $\lim_{n \to \infty} a_n = a$. Prove or disprove: $a \in [0, 1]$. What if we replace [0, 1] by (0, 1) or (0, 1]?

Exercise 13. Let $\{a_n\}$ be a sequence. Prove that $\lim_{n\to\infty} a_n$ exists if and only if for every subsequence $\{a_{n_k}\}, \lim_{k\to\infty} a_{n_k}$ exists. (Note that we do not assume the subsequence limits are the same).

Exercise 14. Let $\{a_n\}, \{b_n\}$ be sequences such that $\forall n \in \mathbb{N}, b_n \neq 0$. Assume that $\lim_{n \to \infty} \frac{a_n}{b} = 1$. Prove or disprove: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

Exercise 15. In Exercise 14, what if we further assume the existence of $\lim_{n\to\infty} a_n$ or $\lim_{n\to\infty} b_n$? That is, assume that $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$ and $\lim_{n\to\infty} a_n$ exists – could be either a number of $\pm\infty$ (or further assume $\lim_{n\to\infty} b_n$ exists), prove or disprove: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

Exercise 16. Prove or disprove: Let $\{a_n\}, \{b_n\}$ be bounded sequences and further assume $\lim_{n\to\infty} a_n$ exists. Then: $\lim_{n\to\infty} b_n$ does not exist $\Longrightarrow \lim_{n\to\infty} (a_n b_n)$ does not exist.

Exercise 17. Prove or disprove: If f(x) is not bounded, then there is $\{x_n\}$ such that $\lim_{n\to\infty} |f(x_n)| =$ $+\infty$.

Exercise 18. Given that $\lim_{x\to 0} \sin x = 0$ and $\lim_{x\to 0} \cos x = 1$. Prove that for every $x_0 \in \mathbb{R}$ there holds $\lim_{x \to x_0} \sin x = \sin x_0.$

Exercise 19. Given that $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Prove $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$. (Sol:¹⁴)

Exercise 20. Let $\{a_n\}$ be a sequence. Prove or disprove: If $\lim_{n\to\infty} \frac{a_n + a_{n+1} + a_{n+2}}{3} = a$, then $\lim_{n\to\infty} a_n = a_n$ a.

Exercise 21. Let $\{a_n\}, \{b_n\}$ be sequences. Prove that $\limsup_{n\to\infty} (a_n + b_n) \leq \limsup_{n\to\infty} a_n + b_n$ $\limsup_{n\to\infty} b_n$. Can we replace \leq by =?

Exercise 22. Let $\{a_n\}$ be a bounded sequence satisfying

$$\forall \{b_n\}, \qquad \limsup_{n \to \infty} (a_n + b_n) = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n, \tag{8}$$

then $\{a_n\}$ is convergent. (Hint:¹⁵) (Sol:¹⁶)

Problems.

Problem 1. Prove that $\lim_{n\to\infty} n^2 2^{-n} = 0$. (Hint:¹⁷)

Problem 2. Let $n \in \mathbb{N}$ and $P(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$ be a polynomial of degree n. Prove that $\lim_{x\to+\infty} P(x) = +\infty$. (Hint:¹⁸)

Problem 3. Let $\{a_n\}$ be a sequence satisfying $\lim_{n\to\infty} (a_{n+1}-a_n) = a \in \mathbb{R}$. Prove that $\lim_{n\to\infty} \frac{a_n}{n} = a$. $(Hint:^{19})$

Problem 4. Let $E_n := 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$. Prove that $\lim_{n \to \infty} E_n = e := \lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^m$. (Hint:²⁰)

14. We note that $1 - \cos x = 2\left(\sin\frac{x}{2}\right)^2$. Thus it suffices to prove $\lim_{x \to 0} \frac{\sin(x/2)}{x} = \frac{1}{2}$. Let $\varepsilon > 0$ be arbitrary. As $\lim_{x \to 0} \frac{\sin x}{x} = 1$ there is $\delta_0 > 0$ such that for every $0 < |x| < \delta_0$, $\left|\frac{\sin x}{x} - 1\right| < \varepsilon$. Take $\delta = 2\delta_0$. Then for every $0 < |x| < \delta$, we have $0 < \left|\frac{x}{2}\right| < \delta_0$ and consequently $\left|\frac{\sin(x/2)}{x/2} - 1\right| < \varepsilon \Longrightarrow \left|\frac{\sin(x/2)}{x} - \frac{1}{2}\right| < \frac{\varepsilon}{2} < \varepsilon.$

15. Take $b_n = -a_n$.

16. Take $b_n = -a_n$ we have $0 = \limsup_{n \to \infty} 0 = \limsup_{n \to \infty} (a_n + b_n) = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} (a_n) = \limsup_{n \to \infty} a_n - \max_{n \to \infty} (a_n + b_n) = \max_{n \to \infty} a_n + \max_{n \to \infty} (a_n + b_n) = \max_{n \to \infty}$ $\liminf_{n\to\infty} a_n$. Thus $\limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n$ and convergence follows.

17. Expand 2^n using binomial expansion.

18. Let M > 0 be arbitrary. Take R > 1 such that $R > |a_0| + |a_1| + \dots + |a_{n-1}| + M$. Then x > R implies P(x) > M.

19. Write $\frac{a_n}{n} = \frac{(a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1) + a_1}{n}$. Let $\varepsilon > 0$ be arbitrary. Let $N_0 \in \mathbb{N}$ be such that $|a_n - a_{n-1} - a| < \frac{\varepsilon}{2}$ whenever $n \ge N_0$. Now write $\frac{a_n}{n} = \frac{(a_n - a_{n-1}) + \dots + (a_{N_0+1} - a_{N_0})}{n} + \frac{(a_{N_0} - a_{N_0-1}) + \dots + (a_2 - a_1) + a_0}{n}$. Find appropriate N. 20. Recall that we have proved (in the lecture on Sept. 24) $E_n > \left(1 + \frac{1}{n}\right)^n$. On the other hand, try to prove $E_n \le \frac{1}{2}$

 $\lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m.$

^{13.} Prove $\lim_{n\to\infty} (a_n + b_n) = -\infty$. Let M < 0 be arbitrary. As $\lim_{n\to\infty} a_n = -\infty$ there is $N_1 \in \mathbb{N}$ such that $\forall n \ge N_1$, $a_n < M$; As $\lim_{n \to \infty} b_n = -\infty$ there is $N_2 \in \mathbb{N}$ such that $\forall n \ge N_2$, $b_n < M$. Now take $N = \max\{N_1, N_2\}$. For every $n \ge N$, we have $a_n + b_n < M + M = 2 M < M$.

Problem 5. Let p > 0 and $H_n := 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}$. Prove that $\{H_n\}$ converges if and only if p > 1. (Hint:²¹)

^{21.} When $p \leq 1$ the divergence is clear as $1 + \frac{1}{2^p} + \dots + \frac{1}{n^p} > 1 + \frac{1}{2} + \dots + \frac{1}{n}$. When p > 1 form groups of sizes 1, 2, 4, 8, \dots.