Math 117 Fall 2014 Midterm 2 Review Problems

- Midterm 2 coverage:
- Lectures 12-25 and the exercises therein.
- Required sections in Dr. Bowman's book and my 314 notes.
- Homeworks 3-5.
- The exercises below are to help you on the concepts and techniques. The exam problems may or may not look like them.
- Pages 7, 8, 10 of the Midterm Review of Math 314, 2013 may also help.
- Exercises.

Exercise 1. Prove the following by definition.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{3}}=0 ; \quad \lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0 ; \quad \lim _{n \rightarrow \infty} \frac{n^{3}+1}{5 n^{2}+7}=+\infty ; \tag{1}
\end{equation*}
$$

(Sol: ${ }^{1}$)
Exercise 2. Prove the following by definition.
(Sol: ${ }^{2}$)

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x^{2}+1}{x^{3}+1}=1 ; \quad \lim _{x \rightarrow 5-} \frac{x^{2}+1}{x-5}=-\infty ; \quad \lim _{x \rightarrow 1} \sqrt{x+3}=2 . \tag{2}
\end{equation*}
$$

Exercise 3. Disprove the following by definition.
(Sol: ${ }^{3 ;}{ }^{4}$)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n}=2 ; \quad \lim _{x \rightarrow 3} \frac{x^{2}+1}{x^{2}+x+5}=2 . \tag{3}
\end{equation*}
$$

Exercise 4. Prove the following by Squeeze.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sin n^{3}}{n^{3}}=0 ; \quad \lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}-7}}{\sqrt{n^{2}+1}}=1 . \tag{4}
\end{equation*}
$$

(Sol: ${ }^{5,6}$)

1. Prove $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{3}}=0$. Let $\varepsilon>0$ be arbitrary. Take $N>\frac{2}{\varepsilon}$. Then for every $n \geqslant N$, we have $\left|\frac{n^{2}+1}{n^{3}}-0\right|=\frac{n^{2}+1}{n^{3}} \leqslant$ $\frac{n^{2}+n^{2}}{n^{3}}=\frac{2}{n} \leqslant \frac{2}{N}<\varepsilon ;$
${ }^{n^{3}}$ Prove $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0$. Let $\varepsilon>0$ be arbitrary. Take $N \in \mathbb{N}$ such that $N>\frac{2}{\varepsilon}$. Then for every $n \geqslant N$, we have $\left|\frac{2^{n}}{n!}-0\right|=\frac{2^{n}}{n!}=$ $\frac{2}{n}\left(\frac{2^{n-1}}{(n-1)!}\right) \leqslant \frac{2}{n} \leqslant \frac{2}{N}<\varepsilon$.
$\stackrel{\text { Prove }}{N} \lim _{n \rightarrow \infty} \frac{n^{3}+1}{5 n^{2}+7}=+\infty$. Let $M>0$ be arbitrary. Take $N>12 M$. Then for every $n \geqslant N$, we have $\frac{n^{3}+1}{5 n^{2}+7} \geqslant \frac{n^{3}}{5 n^{2}+7 n^{2}}=$ $\frac{n}{12} \geqslant \frac{N}{12}>M$.
2. Prove $\lim _{x \rightarrow 5-} \frac{x^{2}+1}{x-5}=-\infty$. Let $M<0$ be arbitrary. Take $\delta=-\frac{1}{M}$. Then for every $5-\delta<x<5$, we have $\frac{x^{2}+1}{x-5}=-\frac{x^{2}+1}{5-x}<-\frac{x^{2}+1}{\delta}<-\frac{1}{\delta}=M$.

Prove $\lim _{x \rightarrow 5-} \frac{x^{2}+1}{x-5}=-\infty$. Let $M<0$ be arbitrary. Take $\delta=-\frac{1}{M}$. Then for every $5-\delta<x<5$, we have $\frac{x^{2}+1}{x-5}<\frac{1}{x-5}<$ $\frac{1}{-\delta}=M$.

Prove $\lim _{x \rightarrow 1} \sqrt{x+3}=2$. Let $\varepsilon>0$ be arbitrary. Take $\delta<\min \left\{\frac{\varepsilon}{2}, 1\right\}$. Write $h:=x-1$. Then we have, for $0<|x-1|<\delta$, $0<|h|<\delta$, and $\sqrt{x+3}=\sqrt{4+h} \leqslant \sqrt{4+8|h|+4 h^{2}}=2(1+|h|)=2+2|h|<2+\varepsilon$; On the other hand $\sqrt{x+3}=\sqrt{4+h} \geqslant$ $\sqrt{4-|h|} \geqslant \sqrt{4-8|h|+4 h^{2}}=2-2|h|>2-\varepsilon$. Therefore for $0<|x-1|<\delta$ we have $|\sqrt{x+3}-2|<\varepsilon$.
3. Disprove $\lim _{n \rightarrow \infty} \frac{1}{n}=2$. Take $\varepsilon=1$. Let $N \in \mathbb{N}$ be arbitrary. Take $n=\max \{N, 1\}$. Then $n \geqslant N$ and $n \geqslant 1$. This leads to $\left|\frac{1}{n}-2\right| \geqslant 1$ and the proof ends.
4. Disprove $\lim _{x \rightarrow 3} \frac{x^{2}+1}{x^{2}+x+5}=2$. Take $\varepsilon=1$. Let $\delta>0$ be arbitrary. Take $x=3+r$ with $0<|r|<\min \{\delta, 3\}$. Then $0<|x-3|<\delta$ and $x>0$. We have $\left|\frac{x^{2}+1}{x^{2}+x+5}-2\right|=\left|\frac{x^{2}+2 x+9}{x^{2}+x+5}\right|=\left|1+\frac{x+4}{x^{2}+x+5}\right|=1+\frac{x+4}{x^{2}+x+5} \geqslant 1$ since $x>0$. The proof ends.
5. Prove $\lim _{n \rightarrow \infty} \frac{\sin n^{3}}{n^{3}}=0$. We have $-\frac{1}{n^{3}} \leqslant \frac{\sin n^{3}}{n^{3}} \leqslant \frac{1}{n^{3}}$. As $\lim _{n \rightarrow \infty}\left(-\frac{1}{n^{3}}\right)=\lim _{n \rightarrow \infty} \frac{1}{n^{3}}=0$ the conclusion follows from Squeeze.

Exercise 5. Calculate the following limits. Justify your results.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{(-4)^{n}+6^{n}}{5^{n+1}+6^{n+1}} ; \quad \lim _{n \rightarrow \infty} \frac{n}{\left(2 n^{3}+n\right)^{1 / 3}} ; \quad \lim _{x \rightarrow+\infty} \frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+1}} . \tag{5}
\end{equation*}
$$

(Sol: : $^{78 ; 9}$)
Exercise 6. Let $a_{n}=(-1)^{n}-\frac{1}{n}$. Calculate $\sup _{n \in \mathbb{N}} a_{n}, \inf _{n \in \mathbb{N}} a_{n}, \limsup _{n \rightarrow \infty} a_{n}, \liminf _{n \rightarrow \infty} a_{n}$. Justify your answers. (Sol: ${ }^{10}$)

- More exercises

Exercise 7. Let $a>0, b>1$. Prove the following.

Exercise 8.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0 ; \quad \lim _{n \rightarrow \infty} \frac{1}{n^{a}}=0 ; \quad \lim _{n \rightarrow \infty} a^{1 / n}=1 ; \quad \lim _{n \rightarrow \infty} \frac{n^{a}}{b^{n}}=0 . \tag{6}
\end{equation*}
$$

a) Let $a>0$ and $x_{n}=1+a+\frac{a^{2}}{2}+\frac{a^{3}}{3!}+\cdots+\frac{a^{n}}{n!}$. Prove $\left\{x_{n}\right\}$ is Cauchy. (Sol: ${ }^{11}$)
b) Let $b \in \mathbb{R}$ and $x_{n}=1+b+b^{2}+\cdots+b^{n}$. Find all b such that $\left\{x_{n}\right\}$ is Cauchy. Justify.
c) Let $x_{n}=\frac{\sin 1}{1}+\cdots+\frac{\sin n^{2}}{n^{2}}$. Prove that $\left\{x_{n}\right\}$ is Cauchy.

Exercise 9. Given $\lim _{x \rightarrow 0+} \frac{\sin x}{x}=1$. Prove $\lim _{x \rightarrow 0-} \frac{\sin x}{x}=1$.
Exercise 10. Let $\left\{a_{n}\right\}$ be a sequence satisfying $\lim _{n \rightarrow \infty} a_{n}=a$ for some real number $a \neq 0$. Prove that there is $N \in \mathbb{N}$ such that for all $n \geqslant N, a_{n} \neq 0$.
Exercise 11. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences with $\lim _{n \rightarrow \infty} a_{n}=-\infty, \lim _{n \rightarrow \infty} b_{n}=-\infty$. Prove or disprove:
(Sol: ${ }^{12},{ }^{13}$)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=+\infty ; \quad \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=-\infty ; \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1 \tag{7}
\end{equation*}
$$

6. Prove $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}-7}}{\sqrt{n^{2}+1}}=1$. Note that the sequence is only defined for $n \geqslant 3$. We have clearly $\frac{\sqrt{n^{2}-7}}{\sqrt{n^{2}+1}}<1$. On the other hand we have $\frac{\sqrt{n^{2}-7}}{\sqrt{n^{2}+1}}>\frac{\sqrt{n^{2}-7}}{\sqrt{(n+1)^{2}}}=\frac{\sqrt{(n-\sqrt{7})(n+\sqrt{7})}}{n+1}>\frac{n-\sqrt{7}}{n+1}$. The conclusion now follows from Squeeze.
7. $\lim _{n \rightarrow \infty} \frac{(-4)^{n}+6^{n}}{5^{n+1}+6^{n+1}}$. We have $\frac{(-4)^{n}+6^{n}}{5^{n+1}+6^{n+1}}=\frac{1}{6} \cdot \frac{\left(\frac{-4}{6}\right)^{n}+1}{\left(\frac{5}{6}\right)^{n+1}+1}$. The limit is $\frac{1}{6}$ after we prove that $\lim _{n \rightarrow \infty} r^{n}=0$ if $|r|<1$. Let $\varepsilon>0$ be arbitrary. Take $N>\log _{r} \varepsilon$. Then for every $n \geqslant N, r^{n}<r^{N}=\varepsilon$.
8. $\lim _{n \rightarrow \infty} \frac{n}{\left(2 n^{3}+n\right)^{1 / 3}}$. We have $\frac{n}{\left(2 n^{3}+n\right)^{1 / 3}}<\frac{n}{\left(2 n^{3}\right)^{1 / 3}}=\frac{1}{2^{1 / 3}}$. On the other hand $\frac{n}{\left(2 n^{3}+n\right)^{1 / 3}}>\frac{n}{\left[2(n+1)^{3}\right]^{1 / 3}}=\frac{1}{2^{1 / 3}} \frac{n}{n+1}$. Thus the limit is $2^{-1 / 3}$ thanks to Squeeze.
9. $\lim _{x \rightarrow+\infty} \frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+1}}$. We prove that the limit is 1 . We have $\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+1}}=\frac{\sqrt{1+x^{-1 / 2}}}{\sqrt{1+x^{-1}}}$. It suffices to prove $\lim _{x \rightarrow+\infty} \sqrt{1+x^{-1 / 2}}=\lim _{x \rightarrow+\infty} \sqrt{1+x^{-1}}=1$. As the proofs are almost identical I will only prove the first one here. Let $\varepsilon>0$ be arbitrary. Take $R>\varepsilon^{-2}$. Then for every $x>R$ we have $\sqrt{1+x^{-1 / 2}}<\sqrt{1+R^{-1 / 2}}<\sqrt{1+\varepsilon}<\sqrt{(1+\varepsilon)^{2}}<$ $1+\varepsilon$. Consequently $\left|\sqrt{1+x^{-1 / 2}}-1\right|<\varepsilon$. We are done.
10. $\sup _{n \in \mathbb{N}} a_{n}=1$. To prove this, first we clearly have $(-1)^{n}-\frac{1}{n}<1$ so 1 is an upper bound. On the other hand for any $b<1$, taking $n=2 k$ with $k>\frac{1}{1-b}$ we have $(-1)^{n}-\frac{1}{n}=1-\frac{1}{2 k}>1-\frac{1-b}{2}=b+\frac{1-b}{2}>b$ so b is not an upper bound. Therefore $\sup _{n \in \mathbb{N}} a_{n}=1$.
$\limsup _{n \rightarrow \infty} a_{n}=1$. To prove this we estimate sup $\left\{a_{n}, a_{n+1}, \ldots\right\}$. Clearly $\forall n \in \mathbb{N}, a_{n}<1$ therefore $\sup \left\{a_{n}, \ldots\right\} \leqslant 1$. On the other hand, $\forall n \in \mathbb{N}, a_{2 n}=1-\frac{1}{2 n} \in\left\{a_{n}, a_{n+1}, \ldots\right\}$ thus $\sup \left\{a_{n}, \ldots\right\} \geqslant 1-\frac{1}{2 n}$. Now it follows from Squeeze that $\limsup _{n \rightarrow \infty} a_{n}=1$.
$\inf _{n \in \mathbb{N}} a_{n}=-2$. First $\forall n \in \mathbb{N},(-1)^{n}-\frac{1}{n} \geqslant-1-1=-2$ so -2 is a lower bound. On the other hand, for any $b>-2$, we have $a_{1}=-1-1=-2<b$. Therefore -2 is the greatest lower bound.
$\liminf _{n \rightarrow \infty} a_{n}=-1$. The proof is similar to the limsup one.
11. Let $\varepsilon>0$ be arbitrary. Let $n_{0}>2 a$. Denote $c:=\frac{a^{n_{0}}}{n_{0}!}$. Then we have for every $n>n_{0}, \frac{a^{n}}{n!}=\frac{a^{n-n_{0}}}{n(n-1) \cdots\left(n_{0}+1\right)} \frac{a^{n_{0}}}{n_{0}!}<$ $c\left(\frac{1}{2}\right)^{n-n_{0}}$. Now take $N \in \mathbb{N}$ such that $c\left(\frac{1}{2}\right)^{N-n_{0}}<\varepsilon$. Let $m>n \geqslant N$ be arbitrary. We have $\left|x_{m}-x_{n}\right|=\left|\frac{a^{n+1}}{(n+1)!}+\cdots+\frac{a^{m}}{m!}\right|<$ $c\left|\left(\frac{1}{2}\right)^{n+1-n_{0}}+\cdots+\left(\frac{1}{2}\right)^{m-n_{0}}\right|=c\left(\frac{1}{2}\right)^{n-n_{0}}\left[\frac{1}{2}+\cdots+\left(\frac{1}{2}\right)^{m-n}\right]<c\left(\frac{1}{2}\right)^{n-n_{0}} \times 2<c\left(\frac{1}{2}\right)^{N-n_{0}}<\varepsilon$.
12. Prove $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=+\infty$. Let $M>0$ be arbitrary. As $\lim _{n \rightarrow \infty} a_{n}=-\infty$, there is $N_{1}>0$ such that $n \geqslant N_{1} \Longrightarrow$ $a_{n}<-M^{1 / 2}$; Similarly there is $N_{2} \in \mathbb{N}$ such that $n \geqslant N_{2} \Longrightarrow b_{n}<-M^{1 / 2}$. Take $N=\max \left\{N_{1}, N_{2}\right\}$. Now for every $n \geqslant N$ we have $a_{n} b_{n}>\left(-M^{1 / 2}\right) \cdot\left(-M^{1 / 2}\right)=M$.

Exercise 12. Let $\left\{a_{n}\right\}$ be a sequence satisfying $\forall n \in \mathbb{N}, a_{n} \in[0,1]$. Further assume $\lim _{n \rightarrow \infty} a_{n}=a$. Prove or disprove: $a \in[0,1]$. What if we replace $[0,1]$ by $(0,1)$ or $(0,1]$?

Exercise 13. Let $\left\{a_{n}\right\}$ be a sequence. Prove that $\lim _{n \rightarrow \infty} a_{n}$ exists if and only if for every subsequence $\left\{a_{n_{k}}\right\}, \lim _{k \rightarrow \infty} a_{n_{k}}$ exists. (Note that we do not assume the subsequence limits are the same).
Exercise 14. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences such that $\forall n \in \mathbb{N}, b_{n} \neq 0$. Assume that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$. Prove or disprove: $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.
Exercise 15. In Exercise 14, what if we further assume the existence of $\lim _{n \rightarrow \infty} a_{n}$ or $\lim _{n \rightarrow \infty} b_{n}$? That is, assume that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$ and $\lim _{n \rightarrow \infty} a_{n}$ exists - could be either a number of $\pm \infty$ (or further assume $\lim _{n \rightarrow \infty} b_{n}$ exists), prove or disprove: $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

Exercise 16. Prove or disprove: Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be bounded sequences and further assume $\lim _{n \rightarrow \infty} a_{n}$ exists. Then: $\lim _{n \rightarrow \infty} b_{n}$ does not exist $\Longrightarrow \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)$ does not exist.
Exercise 17. Prove or disprove: If $f(x)$ is not bounded, then there is $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)\right|=$ $+\infty$.

Exercise 18. Given that $\lim _{x \rightarrow 0} \sin x=0$ and $\lim _{x \rightarrow 0} \cos x=1$. Prove that for every $x_{0} \in \mathbb{R}$ there holds $\lim _{x \rightarrow x_{0}} \sin x=\sin x_{0}$.
Exercise 19. Given that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. Prove $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}$. (Sol: ${ }^{14}$)
Exercise 20. Let $\left\{a_{n}\right\}$ be a sequence. Prove or disprove: If $\lim _{n \rightarrow \infty} \frac{a_{n}+a_{n+1}+a_{n+2}}{3}=a$, then $\lim _{n \rightarrow \infty} a_{n}=$ a.

Exercise 21. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences. Prove that $\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leqslant \limsup _{n \rightarrow \infty} a_{n}+$ $\limsup _{n \rightarrow \infty} b_{n}$. Can we replace \leqslant by $=$?
Exercise 22. Let $\left\{a_{n}\right\}$ be a bounded sequence satisfying

$$
\begin{equation*}
\forall\left\{b_{n}\right\}, \quad \limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\underset{n \rightarrow \infty}{\limsup } a_{n}+\underset{n \rightarrow \infty}{\limsup } b_{n}, \tag{8}
\end{equation*}
$$

then $\left\{a_{n}\right\}$ is convergent. (Hint: $\left.{ }^{15}\right)\left(\right.$ Sol $\left.^{16}\right)$

- Problems.

Problem 1. Prove that $\lim _{n \rightarrow \infty} n^{2} 2^{-n}=0$. (Hint: ${ }^{17}$)
Problem 2. Let $n \in \mathbb{N}$ and $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial of degree n. Prove that $\lim _{x \rightarrow+\infty} P(x)=+\infty$. (Hint: ${ }^{18}$)
Problem 3. Let $\left\{a_{n}\right\}$ be a sequence satisfying $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=a \in \mathbb{R}$. Prove that $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=a$. (Hint: ${ }^{19}$)
Problem 4. Let $E_{n}:=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}$. Prove that $\lim _{n \rightarrow \infty} E_{n}=e:=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}$. (Hint: $\left.{ }^{20}\right)$

[^0]Problem 5. Let $p>0$ and $H_{n}:=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}$. Prove that $\left\{H_{n}\right\}$ converges if and only if $p>1$. (Hint: ${ }^{21}$)
21. When $p \leqslant 1$ the divergence is clear as $1+\frac{1}{2^{p}}+\cdots+\frac{1}{n^{p}}>1+\frac{1}{2}+\cdots+\frac{1}{n}$. When $p>1$ form groups of sizes $1,2,4,8, \ldots \ldots$

[^0]: 13. Prove $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=-\infty$. Let $M<0$ be arbitrary. As $\lim _{n \rightarrow \infty} a_{n}=-\infty$ there is $N_{1} \in \mathbb{N}$ such that $\forall n \geqslant N_{1}$, $a_{n}<M$; As $\lim _{n \rightarrow \infty} b_{n}=-\infty$ there is $N_{2} \in \mathbb{N}$ such that $\forall n \geqslant N_{2}, b_{n}<M$. Now take $N=\max \left\{N_{1}, N_{2}\right\}$. For every $n \geqslant N$, we have $a_{n}+b_{n}<M+M=2 M<M$.
 14. We note that $1-\cos x=2\left(\sin \frac{x}{2}\right)^{2}$. Thus it suffices to prove $\lim _{x \rightarrow 0} \frac{\sin (x / 2)}{x}=\frac{1}{2}$. Let $\varepsilon>0$ be arbitrary. As $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ there is $\delta_{0}>0$ such that for every $0<|x|<\delta_{0},\left|\frac{\sin x}{x}-1\right|<\varepsilon$. Take $\delta=2 \delta_{0}$. Then for every $0<|x|<\delta$, we have $0<\left|\frac{x}{2}\right|<\delta_{0}$ and consequently $\left|\frac{\sin (x / 2)}{x / 2}-1\right|<\varepsilon \Longrightarrow\left|\frac{\sin (x / 2)}{x}-\frac{1}{2}\right|<\frac{\varepsilon}{2}<\varepsilon$.
 15. Take $b_{n}=-a_{n}$.
 16. Take $b_{n}=-a_{n}$ we have $0=\limsup _{n \rightarrow \infty} 0=\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty}\left(-a_{n}\right)=\limsup _{n \rightarrow \infty} a_{n}-$ $\liminf _{n \rightarrow \infty} a_{n}$. Thus $\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}$ and convergence follows.
 17. Expand 2^{n} using binomial expansion.
 18. Let $M>0$ be arbitrary. Take $R>1$ such that $R>\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{n-1}\right|+M$. Then $x>R$ implies $P(x)>M$.
 19. Write $\frac{a_{n}}{n}=\frac{\left(a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\cdots+\left(a_{2}-a_{1}\right)+a_{1}}{n}$. Let $\varepsilon>0$ be arbitrary. Let $N_{0} \in \mathbb{N}$ be such that $\left|a_{n}-a_{n-1}-a\right|<\frac{\varepsilon}{2}$ whenever $n \geqslant N_{0}$. Now write $\frac{a_{n}}{n}=\frac{\left(a_{n}-a_{n-1}\right)+\cdots+\left(a_{N_{0}+1}-a_{N_{0}}\right)}{n}+\frac{\left(a_{N_{0}}-a_{N_{0}-1}\right)+\cdots+\left(a_{2}-a_{1}\right)+a_{0}}{n}$. Find appropriate N.
 20. Recall that we have proved (in the lecture on Sept. 24) $E_{n}>\left(1+\frac{1}{n}\right)^{n}$. On the other hand, try to prove $E_{n} \leqslant$ $\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}$.
