MATH 117 FALL 2014 MIDTERM 1 REVIEW

- Midterm 1 coverage:
 - Lectures 1 11 and the exercises therein.
 - Required sections in Dr. Bowman's book and my 314 notes.
 - \circ Homeworks 1 & 2.
 - The exercises below are to help you on the concepts and techniques. The exam problems may or may not look like them.
 - Pages 3, 4, 6 of the Midterm Review of Math 314, 2013 may also help.
- Important topics and requirements:
 - Numbers.
 - Prove a certain number is rational/irrational.

Exercise 1. Prove that $\sqrt{13}$ is irrational.

Exercise 2. Prove that $\sqrt{15} + \sqrt{7}$ is irrational.

Exercise 3. Prove that $\sqrt{2} + \sqrt[3]{4}$ is irrational. (Sol:¹)

Exercise 4. Prove that

$$\sqrt{5}, \sqrt{5\sqrt{5}}, \sqrt{5\sqrt{5}\sqrt{5}}, \dots$$
 (1)

are all irrational.

Exercise 5. Can you find two irrational numbers a, b such that a b and a/b are both rational?

Problem 1. Let $n \in \mathbb{N}$. Prove that $\sqrt{n\sqrt{n+1}} \notin \mathbb{Q}$. (Hint:²)

- Upper/lower bounds; Sup and Inf.

Exercise 6. Let $A \subseteq \mathbb{R}$ and m be a lower bound of A. Prove that any m' < m is also a lower bound of A. (Sol:³)

Exercise 7. Let $A = \{1 - \frac{1}{n} | n \in \mathbb{N}\}$. Find sup A, inf A and justify.

Exercise 8. Let $A \subseteq \mathbb{R}$. If there is $a \in A$ such that $a \ge a'$ for every $a' \in A$, we say a is the maximum of the set A and write max A = a. Prove that if max A exists, then $\sup A = \max A$. (Sol:⁴)

Exercise 9. Prove that for $A = \{1 - \frac{1}{n} | n \in \mathbb{N}\}$, max A does not exist.

Problem 2. Find out the value of

$$\sqrt{5\sqrt{5\sqrt{5\sqrt{\cdots}}}}\tag{2}$$

through proving certain sequence of numbers is increasing and has an upper bound. (Hint: $\!\!\!^5$)

^{1.} Assume $a = \sqrt{2} + \sqrt[3]{4} \in \mathbb{Q}$. Then $4 = (a - \sqrt{2})^3 = a^3 - 3a^2\sqrt{2} + 6a - 2\sqrt{2}$ which gives $\sqrt{2} = \frac{a^3 + 6a - 4}{3a^2 + 2} \in \mathbb{Q}$. Contradiction.

^{2.} As this is a "Problem" which is supposed to be hard, I won't give full solution, but just a few key steps. Assume $\sqrt{n\sqrt{n+1}} \in \mathbb{Q}$. Then $\sqrt{n+1} \in \mathbb{Q}$. This means $n+1=m^2$ for some $m \in \mathbb{N}$. Consequently $\sqrt{n} m \in \mathbb{Q}$. Now notice that (n,m)=1. Therefore necessary $\sqrt{n} \in \mathbb{Q}$ and $\sqrt{m} \in \mathbb{Q}$. But $\sqrt{n} \in \mathbb{Q}$ implies $n=k^2$ for some $k \in \mathbb{N}$. But it is possible to have both n, n+1 squares as $|m^2-k^2| = |m+k| |m-k| \ge |1+1| \cdot 1 = 2$.

^{3.} Take an arbitrary $a \in A$, we will prove $m' \leq a$ and then by definition m' is a lower bound of A. As m is a lower bound of A, we have $m \leq a$. But then $m' < m \leq a$ which means $m' \leq a$ and thus ends the proof.

^{4.} To prove $\sup A = \max A = a$, recalling the definition of $\sup a$, we see that we need to prove two things: For every $a' \in A$, $a \ge a'$. For any b < a, there is $a' \in A$ such that b < a'. We first prove the first. Take an arbitrary $a' \in A$, as $a = \max A$ we have $a \ge a'$. Now take an arbitrary b < a. Take $a' = a \in A$. Then we have b < a'. Therefore $\sup A = a$.

Problem 3. Let $A \subseteq \mathbb{R}$ and define $B := \{-x | x \in A\}$. Prove that $\sup B = -\inf A$. (Hint:⁶)

• Sets.

Prove relations between abstract sets;

Exercise 10. Let A, B, C be sets. Prove

$$(C-A) \cap (C-B) = C - (A \cup B) \tag{3}$$

and

$$(C-A) \cup (C-B) = C - (A \cap B). \tag{4}$$

 $(Sol:^7)$

Exercise 11. Let A, B, C be sets. Is it always true that

$$(A \cap B) \cup C = A \cap (B \cup C)? \tag{5}$$

Justify your answer.

Intervals.

Exercise 12. Let $a, b, c, d \in \mathbb{R}$ with a < b, c < d. Prove that $(a, b) \subseteq [c, d]$ if and only if $(a, b) \subseteq (c, d)$. Is it true that $(a, b) \subset [c, d]$ if and only if $(a, b) \subset (c, d)$? Justify your answer. **Exercise 13.** Let A = [0, 1] and B = (1, 2). Calculate $A \cap B$ and $A \cup B$. Justify your answers.

Exercise 14. Calculate $\cap_{n \in \mathbb{N}}(n, +\infty)$ and $\cap_{n \in \mathbb{N}}[n, +\infty)$. Justify your answers. (Sol:⁸)

Exercise 15. Calculate $\cup_{n \in \mathbb{N}}(-n, n)$ and $\cup_{n \in \mathbb{N}}[-n, n]$. Justify your answers. (Sol:⁹)

- Functions.
 - Prove the relations in §3.2 of the note "Sets and Functions".
 - Composite and inverse functions.

Exercise 16. Let $f_1(x) = x^2$, $f_2(x) = x^3$, $f_3(x) = x^{-1}$. Calculate $(f_1 \circ f_2 \circ f_3)(2)$, $(f_2 \circ f_1 \circ f_3)(2)$, $(f_3 \circ f_2 \circ f_1)(2)$.

Exercise 17. A function f is called "increasing" if whenever x < y there holds $f(x) \leq f(y)$. A function f is called "strictly increasing" if whenever x < y there holds f(x) < f(y).

a) Define "decreasing" and "strictly decreasing" functions.

5. Set $x_n := \sqrt{5\sqrt{5\sqrt{\cdots\sqrt{5}}}}$ where there are *n* square roots. Then we have $x_n = 5^{(1/2+1/4+\dots+1/2^n)} = 5^{1-2^{-n}}$ and the conclusions follow. Alternatively, we have $x_{n+1} = \sqrt{5\sqrt{5\cdots\sqrt{5}\sqrt{5}}} > \sqrt{5\sqrt{5}\sqrt{\cdots\sqrt{5}}}$ (the last $\sqrt{5}$ replaced by 1. And then we use induction to prove $x_n < 5$ for all *n*.

6. We prove 1. for every $b \in B$, $b \leq -\inf A$; 2. for any $m < -\inf A$ there is $b \in B$ such that b > m.

For the first claim, take an arbitrary $b \in B$. By definition of B there is $a \in A$ such that b = -a. Now we have $a \ge \inf A$ which gives $b = -a \le -\inf A$.

For the second claim, take an arbitrary $m < -\inf A$. Then we have $-m > \inf A$. Thus there is $a \in A$ such that a < -m. Taking $b = -a \in B$ we have b = -a > -(-m) = m.

7. We prove the first one. Recall that to prove "=" we need to prove " \subseteq " and " \supseteq ".

First we prove $(C - A) \cap (C - B) \subseteq C - (A \cup B)$. Take an arbitrary $x \in (C - A) \cap (C - B)$. Then $x \in C - A$ and $x \in C - B$. This gives $x \in C, x \notin A, x \in C, x \notin B$ which means $x \in C, x \notin A \cup B$ and consequently $x \in C - (A \cup B)$.

Next we prove $C - (A \cup B) \subseteq (C - A) \cap (C - B)$. Take an arbitrary $x \in C - (A \cup B)$. Then $x \notin A \cup B$. But if $x \notin A \cup B$ then $x \notin A$ which means $x \in C - A$. A similar argument gives $x \in C - B$. Therefore $x \in (C - A) \cap (C - B)$.

8. First guess $\cap_{n \in \mathbb{N}}(n, +\infty) = \emptyset$. Next we prove this claim. Take any $x \in \mathbb{R}$. There is $n_0 \in \mathbb{N}$ such that $n_0 > x$. Then by definition we have $x \notin (n_0, +\infty)$. By definition of $\cap_{n \in \mathbb{N}}(n, +\infty)$ we see that $x \notin \cap_{n \in \mathbb{N}}(n, +\infty)$. Thus there is no number in this set and it must be \emptyset .

The proof of $\cap_{n \in \mathbb{N}}[n, +\infty)$ is almost identical.

9. We guess $\bigcup_{n \in \mathbb{N}} (-n, n) = \mathbb{R}$. To prove, take any $x \in \mathbb{R}$. There is $n_0 \in \mathbb{N}$ such that $n_0 > |x|$. Then $x \in (-n_0, n_0)$ and therefore $x \in \bigcup_{n \in \mathbb{N}} (-n, n)$. Consequently $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} (-n, n)$. On the other hand, take an arbitrary $x \in \bigcup_{n \in \mathbb{N}} (-n, n)$ then by definition of \cup there is $n_0 \in \mathbb{N}$ such that $x \in (-n_0, n_0)$ which through definition of intervals implies $x \in \mathbb{R}$. Therefore $x \in \mathbb{R}$ and we have $\bigcup_{n \in \mathbb{N}} (-n, n) \subseteq \mathbb{R}$. Summarizing, we have proved $\bigcup_{n \in \mathbb{N}} (-n, n) = \mathbb{R}$.

- b) Find one example for each of the four types of functions.
- c) Prove: If a function is strictly increasing or strictly decreasing, then it is one-to-one. Does the conclusion still hold if we discard "strictly"?

Exercise 18. Let $x, y \in \mathbb{R}$. Apply triangle inequality to prove

$$|x| - |y| \leqslant |x - y|. \tag{6}$$

 $(Sol:^{10})$

$$|x| = |(x - y) + y| \le |x - y| + |y|.$$
(7)

the conclusion immediately follows.