MATH 117 FALL 2014 MIDTERM 1 REVIEW

e Midterm 1 coverage:
o Lectures 1 - 11 and the exercises therein.
o Required sections in Dr. Bowman’s book and my 314 notes.
o Homeworks 1 & 2.

o The exercises below are to help you on the concepts and techniques. The exam prob-
lems may or may not look like them.

o Pages 3, 4, 6 of the Midterm Review of Math 314, 2013 may also help.
e Important topics and requirements:
o Numbers.
— Prove a certain number is rational /irrational.
Exercise 1. Prove that /13 is irrational.
Exercise 2. Prove that /15 ++/7 is irrational.

Exercise 3. Prove that v/2 +3v/4 is irrational. (Sol:1 )
Exercise 4. Prove that

V5, V55, \/5V5V5, ... (1)
are all irrational.

Exercise 5. Can you find two irrational numbers a, b such that a b and a /b are both
rational?

Problem 1. Let n € N. Prove that v/nvn+1¢ Q. (Hint:? )
—  Upper/lower bounds; Sup and Inf.

Exercise 6. Let ACIRR and m be a lower bound of A. Prove that any m’<m is also a
lower bound of A. (Sol:?)

Exercise 7. Let A= {1 — %| ne N}. Find sup A, inf A and justify.

Exercise 8. Let A C R. If there is a € A such that a > a’ for every a’ € A, we say a
is the maximum of the set A and write max A = a. Prove that if max A exists, then
sup A=max A. (Sol:*)

Exercise 9. Prove that for A= {1— %| n €N}, max A does not exist.
Problem 2. Find out the value of

51/5v5 v (2)

through proving certain sequence of numbers is increasing and has an upper bound.
(Hint:5 )

1. Assumea=+v2+3/4 Q. Then4:(a—\@)3:a3—3 a2 /246 a—2+/2 which givesﬁ:%é@. Contradiction.

2. As this is a “Problem” which is supposed to be hard, I won’t give full solution, but just a few key steps. Assume

Vnv/n+1€Q. Theny/n+ 1€ Q. This means n+ 1 =m?2 for some m € N. Consequently v/ m € Q. Now notice that (n, m)=1.
Therefore necessary v/n € @ and \/m € Q. But /n € @ implies n = k2 for some k € N. But it is possible to have both n,n +1
squares as |m2 —k?|=|m+k||lm—k|>[1+1]-1=2.

3. Take an arbitrary a € A, we will prove m’ <a and then by definition m’ is a lower bound of A. As m is a lower bound
of A, we have m <a. But then m’ < m <a which means m’ <a and thus ends the proof.

4. To prove sup A = max A = a, recalling the definition of sup, we see that we need to prove two things: For every a’ € A,
a>a’. For any b< a, there is a’ € A such that b < a’. We first prove the first. Take an arbitrary a’ € A, as a = max A we have
a>a’. Now take an arbitrary b < a. Take a’=a € A. Then we have b < a’. Therefore sup A =a.



Problem 3. Let ACRR and define B: ={—x|x € A}. Prove that sup B=—inf A. (Hint:%)
o Sets.
—  Prove relations between abstract sets;

Exercise 10. Let A, B, C be sets. Prove

(C—A)N(C-B)=C—-(AUB) (3)
and
(C-A)uU(C—-B)=C—-(ANB). (4)
(Sol:7)
Exercise 11. Let A, B, C be sets. Is it always true that
(AnB)UC=ANn(BUC)? (5)

Justify your answer.
— Intervals.

Exercise 12. Let a,b,c,d € R with a <b, ¢ <d. Prove that (a, b) C[c,d] if and only if
(a,b) C(c,d). Is it true that (a, b) C [¢,d] if and only if (a,b) C (c,d)? Justify your answer.

Exercise 13. Let A=[0,1] and B = (1, 2). Calculate AN B and AU B. Justify your

answers.
Exercise 14. Calculate N, en(n,+00) and N, en[n, +00). Justify your answers. (Sol:® )
Exercise 15. Calculate U, en(—n,n) and U, en[—n,n]. Justify your answers. (Sol:? )
o Functions.
— Prove the relations in §3.2 of the note “Sets and Functions”.

— Composite and inverse functions.

Exercise 16. Let fi(z)=2a2, fo(x) =23, fa(x) =21 Calculate (fio fao f3)(2), (f2o fio f3)(2),
(fso f20 f1)(2).

Exercise 17. A function f is called “increasing” if whenever = < y there holds f(z) < f(y). A
function f is called “strictly increasing” if whenever x < y there holds f(z) < f(y).

a) Define “decreasing” and “strictly decreasing” functions.

5. Set zp, := 1/51/5v --v5 where there are n square roots. Then we have z, = 5(1/2+1/4+ - +1/2") — 51-27" 314 the
conclusions follow. Alternatively, we have z,,41 = \/5\/5-~-\/ 5 \/5 >\/5 \/5 V4 \/5 (the last \/5 replaced by 1. And then we

use induction to prove x, <5 for all n.

6. We prove 1. for every b€ B, b << —inf A; 2. for any m < —inf A there is b € B such that b >m.

For the first claim, take an arbitrary b € B. By definition of B there is a € A such that b=—a. Now we have a >inf A which
gives b= —a < —inf A.

For the second claim, take an arbitrary m < —inf A. Then we have —m > inf A. Thus there is a € A such that a < —m.
Taking b= —a € B we have b=—a > —(—m)=m.

w_»

7. We prove the first one. Recall that to prove we need to prove “C” and “D”.

First we prove (C — A)N(C —B)CC — (AU B). Take an arbitrary z € (C — A)N(C —B). Thenz€C — A and z € C — B.
This givesz € C,z ¢ A,z € C,z ¢ B which means z € C,z ¢ AU B and consequently z € C — (AU B).

Next we prove C — (AUB) C (C — A)N(C — B). Take an arbitrary t € C — (AUB). Thenz €C, ¢ AUB. Butif e ¢ AUB
then = ¢ A which means x € C' — A. A similar argument gives z € C — B. Therefore z € (C — A)N (C — B).

8. First guess Npen(n, +00) = &. Next we prove this claim. Take any € R. There is ng € N such that ng > x. Then by
definition we have x ¢ (ng, +00). By definition of N, eN(n, +00) we see that x ¢ N, en(n, +00). Thus there is no number in this
set and it must be &.

The proof of N, en(n, +00) is almost identical.

9. We guess U, en(—n, n) = R. To prove, take any € R. There is ng € N such that ng > |z|. Then = € (—ng, ng) and
therefore = € U, en(—n, n). Consequently R C Upen(—n, n). On the other hand, take an arbitrary « € Upen(—n, n) then by
definition of U there is ng € N such that « € (—ng, ng) which through definition of intervals implies « € R. Therefore € R and
we have Upen(—n, n) CR. Summarizing, we have proved U,en(—n,n) =R.



b) Find one example for each of the four types of functions.

¢) Prove: If a function is strictly increasing or strictly decreasing, then it is one-to-one. Does
the conclusion still hold if we discard “strictly”?

Exercise 18. Let z, y € R. Apply triangle inequality to prove

lz| =yl < |z —yl (6)
(Sol:10 )

10. By triangle inequality we have
lz|=I(z —y) +yl<|lz—yl+yl. (7

the conclusion immediately follows.
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