Math 117 Fall 2014 Midterm 1 Review

- Midterm 1 coverage:
- Lectures 1-11 and the exercises therein.
- Required sections in Dr. Bowman's book and my 314 notes.
- Homeworks $1 \& 2$.
- The exercises below are to help you on the concepts and techniques. The exam problems may or may not look like them.
- Pages 3, 4, 6 of the Midterm Review of Math 314, 2013 may also help.
- Important topics and requirements:
- Numbers.
- Prove a certain number is rational/irrational.

Exercise 1. Prove that $\sqrt{13}$ is irrational.
Exercise 2. Prove that $\sqrt{15}+\sqrt{7}$ is irrational.
Exercise 3. Prove that $\sqrt{2}+{ }^{3} \sqrt{4}$ is irrational. (Sol: ${ }^{1}$)
Exercise 4. Prove that

$$
\begin{equation*}
\sqrt{5}, \sqrt{5 \sqrt{5}}, \sqrt{5 \sqrt{5 \sqrt{5}}}, \ldots \tag{1}
\end{equation*}
$$

are all irrational.
Exercise 5. Can you find two irrational numbers a, b such that $a b$ and a / b are both rational?
Problem 1. Let $n \in \mathbb{N}$. Prove that $\sqrt{n \sqrt{n+1}} \notin \mathbb{Q}$. (Hint: ${ }^{2}$)

- Upper/lower bounds; Sup and Inf.

Exercise 6. Let $A \subseteq \mathbb{R}$ and m be a lower bound of A. Prove that any $m^{\prime}<m$ is also a lower bound of A. $\left(\mathrm{Sol}:{ }^{3}\right)$
Exercise 7. Let $A=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Find $\sup A, \inf A$ and justify.
Exercise 8. Let $A \subseteq \mathbb{R}$. If there is $a \in A$ such that $a \geqslant a^{\prime}$ for every $a^{\prime} \in A$, we say a is the maximum of the set A and write max $A=a$. Prove that if max A exists, then $\sup A=\max A$. (Sol: ${ }^{4}$)
Exercise 9. Prove that for $A=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$, max A does not exist.
Problem 2. Find out the value of

$$
\begin{equation*}
\sqrt{5 \sqrt{5 \sqrt{5 \sqrt{\cdots}}}} \tag{2}
\end{equation*}
$$

through proving certain sequence of numbers is increasing and has an upper bound. (Hint: ${ }^{5}$)

[^0]Problem 3. Let $A \subseteq \mathbb{R}$ and define $B:=\{-x \mid x \in A\}$. Prove that $\sup B=-\inf A$. (Hint: ${ }^{6}$) Sets.

- Prove relations between abstract sets;

Exercise 10. Let A, B, C be sets. Prove

$$
\begin{equation*}
(C-A) \cap(C-B)=C-(A \cup B) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(C-A) \cup(C-B)=C-(A \cap B) \tag{4}
\end{equation*}
$$

(Sol: ${ }^{7}$)
Exercise 11. Let A, B, C be sets. Is it always true that

$$
\begin{equation*}
(A \cap B) \cup C=A \cap(B \cup C) ? \tag{5}
\end{equation*}
$$

Justify your answer.

- Intervals.

Exercise 12. Let $a, b, c, d \in \mathbb{R}$ with $a<b, c<d$. Prove that $(a, b) \subseteq[c, d]$ if and only if $(a, b) \subseteq(c, d)$. Is it true that $(a, b) \subset[c, d]$ if and only if $(a, b) \subset(c, d)$? Justify your answer.
Exercise 13. Let $A=[0,1]$ and $B=(1,2)$. Calculate $A \cap B$ and $A \cup B$. Justify your answers.

Exercise 14. Calculate $\cap_{n \in \mathbb{N}}(n,+\infty)$ and $\cap_{n \in \mathbb{N}}[n,+\infty)$. Justify your answers. (Sol: ${ }^{8}$)
Exercise 15. Calculate $\cup_{n \in \mathbb{N}}(-n, n)$ and $\cup_{n \in \mathbb{N}}[-n, n]$. Justify your answers. (Sol: ${ }^{9}$)

- Functions.
- Prove the relations in $\S 3.2$ of the note "Sets and Functions".
- Composite and inverse functions.

Exercise 16. Let $f_{1}(x)=x^{2}, f_{2}(x)=x^{3}, f_{3}(x)=x^{-1}$. Calculate $\left(f_{1} \circ f_{2} \circ f_{3}\right)(2),\left(f_{2} \circ f_{1} \circ f_{3}\right)(2)$, $\left(f_{3} \circ f_{2} \circ f_{1}\right)(2)$.
Exercise 17. A function f is called "increasing" if whenever $x<y$ there holds $f(x) \leqslant f(y)$. A function f is called "strictly increasing" if whenever $x<y$ there holds $f(x)<f(y)$.
a) Define "decreasing" and "strictly decreasing" functions.
5. Set $x_{n}:=\sqrt{5 \sqrt{5 \sqrt{\cdots \sqrt{5}}}}$ where there are n square roots. Then we have $x_{n}=5^{\left(1 / 2+1 / 4+\cdots+1 / 2^{n}\right)}=5^{1-2^{-n}}$ and the conclusions follow. Alternatively, we have $x_{n+1}=\sqrt{5 \sqrt{5 \cdots \sqrt{5 \sqrt{5}}}} \sqrt{5 \sqrt{5 \sqrt{\cdots \sqrt{5}}}}$ (the last $\sqrt{5}$ replaced by 1. And then we use induction to prove $x_{n}<5$ for all n.
6. We prove 1. for every $b \in B, b \leqslant-\inf A ; 2$. for any $m<-\inf A$ there is $b \in B$ such that $b>m$.

For the first claim, take an arbitrary $b \in B$. By definition of B there is $a \in A$ such that $b=-a$. Now we have $a \geqslant \inf A$ which gives $b=-a \leqslant-\inf A$.

For the second claim, take an arbitrary $m<-\inf A$. Then we have $-m>\inf A$. Thus there is $a \in A$ such that $a<-m$. Taking $b=-a \in B$ we have $b=-a>-(-m)=m$.
7. We prove the first one. Recall that to prove " $=$ " we need to prove " \subseteq " and " \supseteq ".

First we prove $(C-A) \cap(C-B) \subseteq C-(A \cup B)$. Take an arbitrary $x \in(C-A) \cap(C-B)$. Then $x \in C-A$ and $x \in C-B$. This gives $x \in C, x \notin A, x \in C, x \notin B$ which means $x \in C, x \notin A \cup B$ and consequently $x \in C-(A \cup B)$.

Next we prove $C-(A \cup B) \subseteq(C-A) \cap(C-B)$. Take an arbitrary $x \in C-(A \cup B)$. Then $x \in C, x \notin A \cup B$. But if $x \notin A \cup B$ then $x \notin A$ which means $x \in C-A$. A similar argument gives $x \in C-B$. Therefore $x \in(C-A) \cap(C-B)$.
8. First guess $\cap_{n \in \mathbb{N}}(n,+\infty)=\varnothing$. Next we prove this claim. Take any $x \in \mathbb{R}$. There is $n_{0} \in \mathbb{N}$ such that $n_{0}>x$. Then by definition we have $x \notin\left(n_{0},+\infty\right)$. By definition of $\cap_{n \in \mathbb{N}}(n,+\infty)$ we see that $x \notin \cap_{n \in \mathbb{N}}(n,+\infty)$. Thus there is no number in this set and it must be \varnothing.

The proof of $\cap_{n \in \mathbb{N}}[n,+\infty)$ is almost identical.
9. We guess $\cup_{n \in \mathbb{N}}(-n, n)=\mathbb{R}$. To prove, take any $x \in \mathbb{R}$. There is $n_{0} \in \mathbb{N}$ such that $n_{0}>|x|$. Then $x \in\left(-n_{0}, n_{0}\right)$ and therefore $x \in \cup_{n \in \mathbb{N}}(-n, n)$. Consequently $\mathbb{R} \subseteq \cup_{n \in \mathbb{N}}(-n, n)$. On the other hand, take an arbitrary $x \in \cup_{n \in \mathbb{N}}(-n, n)$ then by definition of \cup there is $n_{0} \in \mathbb{N}$ such that $x \in\left(-n_{0}, n_{0}\right)$ which through definition of intervals implies $x \in \mathbb{R}$. Therefore $x \in \mathbb{R}$ and we have $\cup_{n \in \mathbb{N}}(-n, n) \subseteq \mathbb{R}$. Summarizing, we have proved $\cup_{n \in \mathbb{N}}(-n, n)=\mathbb{R}$.
b) Find one example for each of the four types of functions.
c) Prove: If a function is strictly increasing or strictly decreasing, then it is one-to-one. Does the conclusion still hold if we discard "strictly"?
Exercise 18. Let $x, y \in \mathbb{R}$. Apply triangle inequality to prove

$$
\begin{equation*}
|x|-|y| \leqslant|x-y| . \tag{6}
\end{equation*}
$$

(Sol: ${ }^{10}$)

10. By triangle inequality we have

$$
\begin{equation*}
|x|=|(x-y)+y| \leqslant|x-y|+|y| \tag{7}
\end{equation*}
$$

the conclusion immediately follows.

[^0]: 1. Assume $a=\sqrt{2}+{ }^{3} \sqrt{4} \in \mathbb{Q}$. Then $4=(a-\sqrt{2})^{3}=a^{3}-3 a^{2} \sqrt{2}+6 a-2 \sqrt{2}$ which gives $\sqrt{2}=\frac{a^{3}+6 a-4}{3 a^{2}+2} \in \mathbb{Q}$. Contradiction.
 2. As this is a "Problem" which is supposed to be hard, I won't give full solution, but just a few key steps. Assume $\sqrt{n \sqrt{n+1}} \in \mathbb{Q}$. Then $\sqrt{n+1} \in \mathbb{Q}$. This means $n+1=m^{2}$ for some $m \in \mathbb{N}$. Consequently $\sqrt{n m} \in \mathbb{Q}$. Now notice that $(n, m)=1$. Therefore necessary $\sqrt{n} \in \mathbb{Q}$ and $\sqrt{m} \in \mathbb{Q}$. But $\sqrt{n} \in \mathbb{Q}$ implies $n=k^{2}$ for some $k \in \mathbb{N}$. But it is possible to have both $n, n+1$ squares as $\left|m^{2}-k^{2}\right|=|m+k||m-k| \geqslant|1+1| \cdot 1=2$.
 3. Take an arbitrary $a \in A$, we will prove $m^{\prime} \leqslant a$ and then by definition m^{\prime} is a lower bound of A. As m is a lower bound of A, we have $m \leqslant a$. But then $m^{\prime}<m \leqslant a$ which means $m^{\prime} \leqslant a$ and thus ends the proof.
 4. To prove $\sup A=\max A=a$, recalling the definition of sup, we see that we need to prove two things: For every $a^{\prime} \in A$, $a \geqslant a^{\prime}$. For any $b<a$, there is $a^{\prime} \in A$ such that $b<a^{\prime}$. We first prove the first. Take an arbitrary $a^{\prime} \in A$, as $a=\max A$ we have $a \geqslant a^{\prime}$. Now take an arbitrary $b<a$. Take $a^{\prime}=a \in A$. Then we have $b<a^{\prime}$. Therefore $\sup A=a$.
