
Math 117 Fall 2014 Final Review Problems

� Final exam coverage:

� Lectures 1 � 48 and the exercises therein.

� Required sections in Dr. Bowman's book and my 314 notes.

� Homeworks 1 � 9.

� The exercises below only cover materials after Midterm 3. You should also study the
Review Problems for Midterms 1 � 3.

� The exercises below are to help you on the concepts and techniques. The exam
problems may or may not look like them.

� Exercises.

Exercise 1. What is the di�erence between
R
a

b
f(x) dx and

R
a

b
f(t) dt? (Sol:1 )

Exercise 2. Prove by de�nition the integrability of f :=
�
1 x> 0
¡1 x6 0 on [¡1;1] and �nd

R
¡1
1
f(x) dx.

Exercise 3. CalculateZ
0

1

x7 dx;

Z
0

1 dx
1+ x2

;

Z
0

�/2

cos x dx;
Z
0

�/4 dx
(cos x)2

: (1)

Justify your calculation.

Exercise 4. Calculate  Z
0

x 1¡ t
1+ t2

r
dt

!0
;

 Z
cos x

x7

e¡sin t dt

!0
: (2)

Justify your calculation. (Sol:2 )

Exercise 5. Let f(x) := esin x. Calculate f 0; f 00; f 000, f (4) and then the Taylor expansion with Lagrange
form of remainder at x0=0 to degree 3 (that is n=3). (Sol:3 )

Exercise 6. Calculate

lim
x!0

sin 5x
sin 3x

; lim
x!0

cos x¡ cos 100 x
x2

; lim
x!0

x (1¡ cos x)
sin(x3)

: (4)

(Hint:4 )

Exercise 7. Find all x2R such that
P

n=1

1 xn

n3
is convergent. Justify. (Sol:5 )

1. Nothing. They are always equal.

2. For the �rst one we apply FTC2 to obtain the derivative to be (1¡x)/(1+x2)
p

(should add assumption: x<1, sorry!)
For justi�cation just notice that for all t2 [0; x] the function (1¡ t)/(1+ t2)

p
is continuous. For the second one de�ne G(x) :=R

0
x
e¡sin t dt. Thenwe are calculating [G(x7)¡G(cosx)]0=G0(x7) (x7)0¡G0(cosx) (cosx)0=e¡sin x7 7 x6¡e¡sin(cos x) (¡sinx).

Justi�cation is trivial as e¡sin t is continuous on R.

3. We have f 0 = esin x cos x, f 00 = esin x cos2x ¡ esin x sin x, f 000 = esin x cos3x ¡ 3 esin x sin x cos x ¡ esin x cos x,
f(4)=3 esin x sin2x+ esin x sinx+ esin x cos4x¡ 4 esin x cos2x¡ 6 esin x sinx cos2x. Thus f(0)= 1; f 0(0)= 1; f 00(0)= 1; f 000(0)= 0,
and

esin x=1+x+
x2

2
+
x4

24
esin c [3 sin2c+ sin c+ cos4c¡ 4 cos2c¡ 6 sinc cos2c] (3)

where c2 (0; x).
4. For limx!0

x (1¡ cos x)
sin(x3)

, apply L'Hospital 3 times.

5. First we calculate the radius of convergence:

�: =

�
limsup
n!1

�
1

n3

�
1/n

�¡1
=1: (5)

Therefore the power series converges when jxj< 1 and diverges when jxj> 1. For jxj=1, we check
���xn
n3

���6 1

n3
. As

P
n=1
1 1

n3

converges, so does
P

n=1
1 xn

n3
. Summarizing, the series converges for jxj61 and diverges for jxj> 1.



� More exercises

Exercise 8. Let f : [0; 1] 7! R be integrable and c 2R. Prove by de�nition that c f is integrable on
[0; 1] and furthermore Z

0

1

(c f)(x) dx= c

Z
0

1

f(x) dx: (6)

Exercise 9. Let m2N. Let f : [0; n] 7!R be integrable. Let g(x) := f(mx). Prove by de�nition that
g is integrable on [0; 1] and calculate

R
0

1
g(x) dx. (Sol:6 )

Exercise 10. Let f : [0; 1] 7!R be continuous and non-negative. Prove: If
R
0

1
f(x) dx=0 then f(x)=0

for all x2 [0; 1]. Does the conclusion still hold if we drop the assumption of continuity? (Sol: 7 )

Exercise 11. Find a function f : [0; 1] 7!R such that jf j is integrable on [0; 1] but f is not. Justify.

Exercise 12. Let f(x) :=

(
x4 sin 1

x
x=/ 0

0 x=0
. Find the largest k 2N such that f(x) is k-th di�erentiable

for all x2R. Justify. (Sol:8 )

Exercise 13. Let f(x)=x2 cos x. Calculate f (50)(x). (Ans:9 )

Exercise 14. Does limx!0+xx exist? If it does �nd the value. Here xx := exln x. (Sol:10 )

Exercise 15. Prove: If f 00(0) exists, then

lim
h!0

f(h)+ f(¡h)¡ 2 f(0)
h2

= f 00(0): (10)

(Sol:11 )

6. First it shouldbe f : [0;m] 7!R. We prove U(g)= 1

m
U(f). Similarly L(g)= 1

m
L(f). As f is integrablewe have U(f)=L(f)

and consequently U(g) =L(g)=
1

m

R
0

m
f(x) dx which yields the integrability of g as well as

R
0

1
g(x) dx=

1

m

R
0

m
f(x) dx.

We �rst prove U(g)6 1

m
U(f). Let P = fx0; :::; xng be an arbitrary partition of [0;m]. Then P 0=

�x0
m
; :::;

xn
m

	
is a partition

of [0; 1]. We calculate

U(g; P 0)=
X
k=1

n

sup
[xk¡1/m;xk/m]

g(x)
�
xk
m
¡ xk¡1

m

�
=
1

m

X
k=1

n

sup
[xk¡1/m;xk/m]

f(mx) (xk¡xk¡1)=
1

m
U(f ; P ): (7)

This gives U(g)6 1

m
U(f ; P ). As P is arbitrary, we have U(g)6 1

m
infPU(f ; P )=

1

m
U(f).

Next we prove U(g) > 1

m
U(f). Let P = fx0; :::; xng be an arbitrary partition of [0; 1]. Then P 0 = fm x0; :::; m xng is a

partition of [0;m]. Thus we have

U(g; P ) =
X
k=1

n

sup
[xk¡1;xk]

g(x) (xk¡xk¡1) =
X
k=1

n

sup
[mxk¡1;mxk]

f(x) (xk¡xk¡1)=
1
m
U(f ; P 0)> 1

m
U(f): (8)

Taking in�mum over all P we have U(g)> 1

m
U(f).

7. Assume the contrary. Then there is c2 [0;1] such that f(c)>0. As f is continuous, there is � >0 such that f(x)>f(c)/2

for all x2 [c¡ �; c+ �]\ [0; 1]. Denote [a; b] := [c¡ �; c+ �]\ [0; 1]. Then b¡ a>�. We haveZ
0

1

f(x) dx>
Z
a

b

f(x) dx>
Z
a

b f(c)

2
dx> f(c) �

2
> 0 (9)

contradiction. The conclusion is false if f is not assumed to be continuous. For example f(x) =
�
1 x=0
0 x=/ 0

is not zero for

every x2 [0; 1] but
R
0

1
f(x) dx=0.

8. First study k = 1. Clearly f(x) is di�erentiable at every x=/ 0 with f 0(x) = 4 x3 sin1
x
¡ x2 cos1

x
. On the other hand we

have limx!0
x4 sin(1/x)

x
=0 so f 0(0)= 0.

Next study k=2. Clearly f 0(x) is di�erentiable at every x=/ 0 with f 00(x)=12x2 sin1
x
¡ 6 x cos1

x
¡ sin1

x
. On the other hand

we have limx!0
f 0(x)¡ f 0(0)

x¡ 0 = limx!0

h
4x2 sin1

x
¡x cos1

x

i
=0 so f 00(0)= 0.

Now for k=3. We notice limx!0f
00(x) does not exist thus f 00(x) is not continuous at 0 and consequently is not di�erentiable

at 0. So f 000(0) does not exist.
So the largest k is 2.

9. (2450¡x2) cosx¡ 100x sinx. x

10. We have limx!0+x lnx= limt!1t e¡t=0 by L'Hospital. Therefore limx!0+x
x= limx!0+e

xln x=elimx!0+xln x=e0=1.
Note that we have use the continuity of ex.



� Problems.

Problem 1. Let f : [a; b] 7! [c; d] and g: [c; d] 7!R. Prove or disprove:

a) If f is integrable on [a; b] and g is continuous on [c; d], then g � f is integrable on [a; b];

b) If f is integrable on [a; b] and g is integrable on [c; d], then g � f is integrable on [a; b].

Problem 2. Let f : [0; 1] 7!R be Riemann integrable. Prove or disproveZ
a

b

f(x) dx= lim
n!1

1
n

X
k=1

n

f

�
k
n

�
: (12)

(Hint:12 )

Problem 3. Prove or disprove:

i. If jf(x)¡ cj is Riemann integrable on [a; b] for all c2R, then f(x) is Riemann integrable on [a; b];

ii. If jf(x)j and jf(x)¡ 1j are Riemann integrable on [a; b], then f is Riemann integrable on [a; b].

Problem 4. Prove that, 8x2R

sin x=x¡ x3

3!
+
x5

5!
¡ x7

7!
+ ��� (15)

using the following idea by Jyesthadeva (c. 1500 - c. 1575) of ancient India:

i. It su�ces to prove for x> 0;

ii. When x> 0 there holds 0< sin x<x;

iii. Now apply

cos x=
Z
0

x

sin t dt; sin x=1¡
Z
0

x

cos tdt (16)

again and again. (Hint: 13 )

Problem 5. Let h(x): [0;1] 7!R be such that h(x)> 0 for every x2 [0; 1]. Prove that there is a partition
fx0=0; x1; :::; xn=1g and tk2 [xk¡1; xk], k=1; 2; :::; n such that

(xk¡xk¡1)<h(tk): (19)

(Hint:14 )

11. By Taylor's theorem we have f(x) = f(0) + f 0(0) x+
f 00(0)

2
x2+R(x) with limx!0

R(x)

x2
=0. Substituting this into the

formula we have
f(h) + f(¡h)¡ 2 f(0)

h2
= f 00(0)+

R(h)+R(¡h)
h2

¡! f 00(0) as h¡! 0: (11)

12. Let "> 0 be arbitrary. As f is integrable there is a partition P = fx0; :::; xmg of [0; 1] such that U(f ; P )¡
R
0
1
f <"/2;R

0

1
f ¡L(f ; P )<"/2. Now for each n, denote Pn=

n
0;

1

n
; :::; 1

o
. We have

U(f ; Pn)=
X

k:
� k¡1

n
;
k

n

�
�[xl¡1;xl] for some l

 
sup� k¡1
n
;
k

n

�f
!
1
n
+

X
other k's

 
sup� k¡1
n
;
k

n

�f
!
1
n
: (13)

Now note that there are at most 2m terms in the 2nd sum so it is no more than 2mM

n
where M := sup[0;1] jf j which is

�nite as f , being integrable, must be bounded. Now prove

U(f ; Pn)6U(f ; P )+ 4mM

n
(14)

and similarly L(f ; Pn)>L(f ; P )¡ 4mM

n
.

13. Obviously (16) is nonsense! It should be

sinx=
Z
0

x

cos tdt; cosx=1¡
Z
0

x

sin tdt: (17)

Now as 0< sinx<x, we have 0<
R
0
x sin tdt <

R
0
x
t dt=

x2

2
. Thus

1> cosx> 1¡ x2

2
: (18)

But then
R
0
x
1 dt >

R
0
x cos tdt >

R
0
x
�
1¡ t2

2

�
dt=x¡ x3

6
. So sinx>x¡ x3

6
. Substitute into cosx=1¡

R
0
x sin tdt we have

cosx< 1¡ x2

2
+

x4

24
. And so on. To prove convergence, prove that the series is Cauchy.



Note. This leads to a generalization of Riemann integration by Jaroslav Kurzweil and Ralph Henstock
around 1960. See �Return to the Riemann Integral� by R. G. Bartle, American Mathematical Monthly,
1996.

Problem 6. Prove or disprove: Let f ; g satisfy all assumptions of L'Hospital but instead of the existence
of limx!x0

f 0(x)

g 0(x)
we have that limx!x0

f 0(x)

g 0(x)
does not exist, then limx!x0

f(x)

g(x)
does not exist.

Problem 7. Let f : [0; 1] 7!R be integrable and g:R 7!R be periodic with period 115 and integrable on
[0; 1]. Prove

lim
n!1

Z
0

1

f(x) g(nx) dx=

�Z
0

1

f(x) dx

��Z
0

1

g(x) dx

�
: (20)

(Hint:16 )

14. Prove by contradiction and use nested intervals. Note that all we need is (xk¡xk¡1)< sup[xk¡1;xk]h(x). Start from an
arbitrary partition and then re�ne to try to meet this requirement. Re�ne in such a way that the size of the intervals tends to
zero. Note that if no matter how we re�ne there is always an interval violating the requirement, we have a sequence of nested
interval [an; bn] on which bn¡ an>sup[an;bn]h(x). Let fcg=\n=1

1 [an; bn]. We have bn¡ an>h(c) for all n. Taking n!1 we
have 0>h(c). But we are given h(c)> 0. Contradiction.

15. That is g(x+1)= g(x) for all x2R.

16. As f ; g are both integrable there isM such that jf j; jg j<M for all relevant x. Let ">0 be arbitrary. There ism2N and
fm(x) := sup[(k¡1)/m;k/m]f for x2

h
k¡ 1
m

;
k

m

i
such that

R
0

1 jf(x)¡ fm(x)j dx< "

2M
. Now �nd N 2N such that for all n>N ,����Z

0

1

fm(x) g(nx) dx¡
Z
0

1

f(x) dx

Z
0

1

g(x) dx

����< "
2M

: (21)
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