MATH 117 FALL 2014 FINAL REVIEW PROBLEMS

e Final exam coverage:
o Lectures 1 — 48 and the exercises therein.
o Required sections in Dr. Bowman’s book and my 314 notes.
o Homeworks 1 — 9.

o The exercises below only cover materials after Midterm 3. You should also study the
Review Problems for Midterms 1 — 3.

o The exercises below are to help you on the concepts and techniques. The exam
problems may or may not look like them.

e [Exercises.
Exercise 1. What is the difference between f: f(z)dz and f: F(t)de? (Sol:1)

x>0

1
z<0 O [~1,1] and find [ ", f(z)da.

Exercise 2. Prove by definition the integrability of f:= { 171

Exercise 3. Calculate

1 1 /2 /4
/ 27 dx; / %; / cos = dux; / LQ (1)
0 o l+z 0 N (cosx)

Justify your calculation.
= 1t @’ '
- de | - —sint q¢ | )

Justify your calculation. (Sol:?)

Exercise 4. Calculate

Exercise 5. Let f(x):=e™%. Calculate f/, f”, f, f and then the Taylor expansion with Lagrange
form of remainder at xo=0 to degree 3 (that is n=3). (Sol:?)

Exercise 6. Calculate

. lim ——————; -
z—o0sin3z’ z—0 x? ' z—0 sin(z3)

sinbx cos  — cos 100 = .z (l—cosx) (4)

(Hint:* )
Exercise 7. Find all z € R such that > > % is convergent. Justify. (Sol:> )

1. Nothing. They are always equal.
2. For the first one we apply FTC2 to obtain the derivative to be /(1 —z) /(1 +2?) (should add assumption: z < 1, sorry!)

For justification just notice that for all ¢ € [0, ] the function /(1 —t) /(1 +t?) is continuous. For the second one define G(z) :=
fox esint ¢, Then we are calculating [G(z7) — G(cosz)]' =G/ (z7) (27) — G'(cos ) (cosz)' =e 50 &7 7 26 _ g —sin(cos®) (_gjn g,
Justification is trivial as e 7"t is continuous on R.

3. We have f/ = e % cos x, f" = 5% cos’r — ™% sin z, f// = % cos®z — 3 5% sin x cos & — e T cos .,
F® =3 esin @ gin2y 4 50 Tgin g + 50 T cogly — 4 €517 @ cos?z — 6 €51 T sinz cos2z. Thus Ff(0)=1, f(0)=1, f”(0)=1, f""(0)=0,
and

. 2 4 i
M =14+ % + % ein ¢ [3sin%c + sin ¢ + costc — 4 cos?c — 6 sin ¢ cos?c] 3)

where c € (0, z).
z (1 —cosx)
sin (z3)

4. For lim,_,¢ , apply L’'Hospital 3 times.

5. First we calculate the radius of convergence:

1/n\ —1
p: :(limsup <i3> > =1. (5)
n—oo n

Therefore the power series converges when |z| <1 and diverges when |z| > 1. For |z|=1, we check i—z g%. As> > %

x" .. . .
converges, so does 220:1 - Summarizing, the series converges for x| <1 and diverges for |z| > 1.



e More exercises

Exercise 8. Let f:[0,1] — R be integrable and ¢ € R. Prove by definition that ¢ f is integrable on

[0,1] and furthermore
/0 (cf)(x)d:c:c/o f(z) dz. (6)

Exercise 9. Let m € N. Let f:[0,n]— R be integrable. Let g(x):= f(mz). Prove by definition that
g is integrable on [0, 1] and calculate fo z)dz. (Sol:f)

Exercise 10. Let f:[0,1]— R be continuous and non-negative. Prove: If fol f(z)dz =0 then f(z)=
for all z €0, 1]. Does the conclusion still hold if we drop the assumption of continuity? (Sol:7 )

Exercise 11. Find a function f:[0,1]— R such that |f| is integrable on [0, 1] but f is not. Justify.

x* sm z#0
0 z=0
for all z € R. Justify. (Sol:® )

Exercise 13. Let f(z)=x2cosz. Calculate f©®%(z). (Ans:? )

Exercise 12. Let f(x):= . Find the largest k € N such that f(z) is k-th differentiable

Exercise 14. Does lim,_oz® exist? If it does find the value. Here z®:=e*"®. (Sol:10)

Exercise 15. Prove: If f”(0) exists, then

lim f(h) + f(_h) -2 f(O) _ f”(O). (10)

h—0 h?

(Sol:1 )

6. First it should be f:[0,m] »—>1R We prove U(g) =1 — U(f). Similarly L(g )*— L(f). As fis integrable We have U(f) L(f)
and consequently U(g) = L(g — fo f(x) dz which ylelds the integrability of g as well as fo dx =— fo x) dz.

We first prove U(g) < - U(f) Let P={xo,...,xn} be an arbitrary partition of [0,m]. Then P’

o } isa partltlon
of [0,1]. We calculate

TTL

n n

T T — 1 1
Ug.P)=>"  sup  g@)(E-TE)= 8" sup  f(ma) (wr—ak—1)=--U(f, P). )
k=1 [zr—1/m,zK/m] m m mk:l [zrk—1/m,zr/m] m
This gives U(g) g%U(f,P) As P is arbitrary, we have U(g) < —mpr(f P)=— U(f)
Next we prove U(g) > % U(f). Let P ={xo, ..., zn} be an arbitrary partition of [0, 1]. Then P’ ={m zg, ..., mz,} is a
partition of [0, m]. Thus we have

n n

Z sup 9(z) (T — Tk -1 :Z sup f(x)(:ck—xkfl):%U(f,P’)Z%U(f). (8)

k=1 [Tr—1,24] k=1 [mar—1,mx]

Taking infimum over all P we have U(g) 2% U(f).

7. Assume the contrary. Then there is c € [0,1] such that f(c) >0. As f is continuous, there is § > 0 such that f(z) > f(c)/2
for all z € [c —§,c+ 8] N0, 1]. Denote [a,b]:=[c—38,c+6]N[0,1]. Then b—a >¢d. We have

: b b 1), o f(0)6
[ r@ars [ r@as [T HDar= 10050 ©

contradiction. The conclusion is false if f is not assumed to be continuous. For example f(z)= { 1 I:,é() is not zero for
every z € [0, 1] butfo z)dz=0

8. First study k= 1. Clearly f(m) is differentiable at every x # 0 with f/(z) =4« sml — 2 cos— On the other hand we
have limy_.¢ M =0so f(0)=

Next study k=2. Clearly f/(z) is differentiable at every x#£0 with f”(z)=1222 smf —6x cosl — smf On the other hand
we have limzﬂow: limg_, [432 sml — x cos— ] 0 so f''(0)=0.

Now for k=3. We notice limy_,o f”/(z) does not exist thus f’/(z) is not continuous at 0 and consequently is not differentiable
at 0. So f”"(0) does not exist.

So the largest k is 2.

9. (2450 — z?) cosz — 100z sinz. x

10. We have lim, .o+ Inz =lim; _, ot e~ =0 by L’Hospital. Therefore lim,,_,¢+2%= limxHOJrexl“ z— glime—oprlne _ 0_1
Note that we have use the continuity of e®.



e Problems.
Problem 1. Let f:[a, b]— [c,d] and g:[c,d]— R. Prove or disprove:
a) If f is integrable on [a, b] and g is continuous on [c,d], then go f is integrable on [a, b];
b) If f is integrable on [a, b] and g is integrable on [c,d], then go f is integrable on [a, b].
Problem 2. Let f:[0,1]— R be Riemann integrable. Prove or disprove

b n
/ f(=) dx:nlggo%z f(%) (12)
(Hint:12 ) ‘ =t
Problem 3. Prove or disprove:
i. If | f(z) — c| is Riemann integrable on [a, b] for all c€ R, then f(z) is Riemann integrable on [a, b];
ii. If | f(z)| and | f(z) — 1| are Riemann integrable on [a, b], then f is Riemann integrable on [a, b].
Problem 4. Prove that, Vr € R

. 3 x5 27
smx:xf§+afﬁ+... (15)

using the following idea by Jyesthadeva (c. 1500 - ¢. 1575) of ancient India:
i. It suffices to prove for x> 0;
ii. When « > 0 there holds 0 <sinz < z;
iii. Now apply
x x
cosx:/ sin t dt; sinlef/ costdt (16)
0 0

again and again. (Hint: 13 )

Problem 5. Let h(z): [0,1] — R be such that h(z) >0 for every x € [0,1]. Prove that there is a partition
{zo=0,21, ..., 2, =1} and ty € [xx_1, 21|, k=1,2,..., n such that

(:l’kfibk,l) <h(tk). (19)
(Hint:14 )
11. By Taylor’s theorem we have f(z)= f(0) + f'(0)z + @ 22 + R(z) with limg_,¢ R;f) =0. Substituting this into the
formula we have
f(h) + f(;;l) -2 f(O) — f”(()) + R(h) ';2R(_h) _ f”(O) as h — 0. (11)

12. Let € >0 be arbitrary. As f is integrable there is a partition P = {zo, ...,z } of [0, 1] such that U(f, P) — fol f<e/2,
fol f—L(f,P)<e/2. Now for each n, denote P, = {07%7 - 1}. We have

1 1
U(f,Pn)= > sup f)—+ D sup f) (13)
k:[kil,i}g[zl,l,zl] for some [ [k;l’%] other k’s [%’%]

M

Now note that there are at most 2 m terms in the 2nd sum so it is no more than 272
finite as f, being integrable, must be bounded. Now prove

where M := supjg,1] | f| which is

dmM
U(f, Pa) SU(S, P)+ = (14)
and similarly L(f, Po) > L(f, P) — 222
13. Obviously (16) is nonsense! It should be
~ T "~ T
sinx:/ costdt; cosm:l—/ sintdt. 17)
Jo Jo
Now as 0 <sinz < x, we have 0 < fom sintdt < fox tdt:z;. Thus
22
1>cosx>1—"F. (18)

2
. . X 2 3 3 .
But then joz 1dt> f(;c costdt > .foz (1 —%)dt:x—%. So sin:c>x—%. Substitute into cosx:l—joz sint dt we have

cosx <1— % + ;—4. And so on. To prove convergence, prove that the series is Cauchy.



Note. This leads to a generalization of Riemann integration by Jaroslav Kurzweil and Ralph Henstock
around 1960. See “Return to the Riemann Integral” by R. G. Bartle, American Mathematical Monthly,
1996.

Problem 6. Prove or disprove: Let f, g satisfy all assumptions of L’Hospital but instead of the existence

f'(=) f'(=) f(=) .
g'(z) (@) e does not exist.

Problem 7. Let f:[0,1]+— R be integrable and g: R+— R be periodic with period 1'° and integrable on
[0,1]. Prove
1 1 1
lim / f(x)glnz)dz= (/ f(z) d:v) (/ g(x) dx>. (20)

14. Prove by contradiction and use nested intervals. Note that all we need is (zy — Tk —1) <SUp[g,_, o, )2(x). Start from an
arbitrary partition and then refine to try to meet this requirement. Refine in such a way that the size of the intervals tends to
zero. Note that if no matter how we refine there is always an interval violating the requirement, we have a sequence of nested
interval [an, by] on which by, —apn Zsupg, ,1h(x). Let {c} =N7L[an,by]. We have by, —a,, > h(c) for all n. Taking n— oo we
have 0 > h(c). But we are given h(c) > 0. Contradiction.

15. That is g(z + 1) = g(z) for all z € R.

16. As f, g are both integrable there is M such that |f|,|g| < M for all relevant x. Let € >0 be arbitrary. There is m € N and
Jm(®) :=sup[(x —1)/m,k/m]f for z € [ k1 %} such that ]01 [f(z) = fr(z)|dz < . Now find N € N such that for all n > N,

m

of limy_, 4, we have that lim,_, ,, does not exist, then lim,_,,,

(Hint:16 )

€
2M
£

<o (21)

‘/01 Im(z) g(nﬂc)dx—/ol f(:c)dx/ol g(z) da
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