MATH 118 WINTER 2015 FINAL REVIEW

- Final coverage:
 - All lectures and the exercises therein.
 - \circ Homeworks 1-8.
- The exercises below are to help you on the concepts and techniques. The exam problems may or may not look like these exercises/problems.
- The exercises below are for materials after Midterm 2. You should also study the reviews for Midterms 1 & 2.

1. Exercises.

Exercise 1. Solve

$$\max / \min f(x) = x^3 - 3x + 3$$
 s.t. $-3 \le x \le \frac{3}{2}$; (1)

$$\max / \min g(x) = \frac{x-1}{x+1} \quad s.t. \quad 0 \leqslant x \leqslant 4; \tag{2}$$

$$\max / \min h(x) = \sin 2x - x \quad s.t. \quad -\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}. \tag{3}$$

(Ans:1)

Exercise 2. Let f, g be convex on [a, b]. Prove that f + g is also convex on [a, b]

- a) under the assumption that f, g are twice differentiable;
- b) under the assumption that f, g are differentiable;
- c) under no extra assumptions.

Exercise 3. Find the arc lengths along the following curves.

- a) $y = x^{3/2}$ from x = 0 to x = 4.
- b) $y^3 = x^2$ from (0,0) to (8,4).

2. More exercises.

Exercise 4. Solve

$$\max f(x) = (1 - x^{2/3})^{3/2} \text{ subject to } -\infty < x < \infty.$$
 (4)

Exercise 5. Let $f(x): \mathbb{R} \to \mathbb{R}$ be differentiable and such that the only solution to f'(x) = 0 is x = 0. Further assume that f''(0) > 0. Prove or disprove: 0 is the global minimizer.

Exercise 6. Let $a \in \mathbb{R}$. Consider $f(x) := |x|^a$. Find all a such that f(x) is convex on \mathbb{R} . Justify.

Exercise 7. Let f, g be convex, nonnegative, and increasing on [a, b]. Prove that fg is convex on [a, b].

Exercise 8. Find the volumes of the solids of revolution for $y = 9 - x^2$, $0 \le x \le 3$ around the x-axis and y-axis, respectively.

Exercise 9. Find the volume and surface area of the solid generated by revolving the area lying under $y = \sin x$ from x = 0 to $x = \pi$ about the x-axis.

3. Problems.

Problem 1. Minimize the surface area of a cylinder when its volume is fixed. (Ans: ²)

Problem 2. Show that of all isoscles triangles inscribed in a given circle, an equilateral triangle has the largest perimeter.

1.
$$f(-1) = 5$$
, $f(-3) = -15$; $g(4) = \frac{3}{5}$, $g(0) = -1$; $h(\mp \frac{\pi}{2}) = \pm \frac{\pi}{2}$.

^{2.} h = 2r.

Problem 3. Prove or disprove: If f is twice differentiable on (-1,1) and f''(0) > 0, then there is $\delta > 0$ such that f is convex on $(-\delta, \delta)$.

Problem 4. A function f(x) is called Jensen convex (or midpoint convex) on [a,b] if and only if for every x, $y \in [a,b], \ f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}$. Prove the following.

- i. If f(x) is convex on [a, b] then it is Jensen convex on [a, b];
- ii. Assume f(x) is continuous on [a, b]. Then f is Jensen convex on $[a, b] \Longrightarrow f$ is convex on [a, b];

Problem 5. Calculate the volume of the solid enclosed by the following surfaces: $x^2 + y^2 + z^2 = 3$, z = 0, $z^2 = x^2 + y^2 - 1$.