MATH 118 WINTER 2015 LECTURE 48 (APR. 10, 2015)

Final Review III: Curves and Surfaces (Cont.)

- Solids of revolution.
 - \circ $y = f(x) \ge 0, a \le x \le b$ rotate around x-axis.

$$V = \pi \int_{a}^{b} f(x)^{2} dx. \tag{1}$$

 \circ $y = f(x) \ge 0$, $a \le x \le b$ rotate around y-axis.

$$V = 2\pi \int_{a}^{b} x f(x) dx.$$
 (2)

Trivial generalizations to the case where we have two graphs y = f(x), y = g(x).

Example 1. Calculate the volume of a solid generated by the revolution of the catenary $y = \frac{1}{2} (e^x + e^{-x}), \ 0 \le x \le 1$

- a) around the x-axis;
- b) around the y-axis.

Solution.

a) We have

$$V = \pi \int_0^1 \left[\frac{e^x + e^{-x}}{2} \right]^2 dx$$

$$= \frac{\pi}{4} \int_0^1 \left[e^{2x} + e^{-2x} + 2 \right] dx$$

$$= \frac{\pi}{8} \left(e^2 - e^{-2} + 4 \right). \tag{3}$$

b) We have

$$V = 2\pi \int_{0}^{1} x \left(\frac{e^{x} + e^{-x}}{2}\right) dx$$

$$= \pi \int_{0}^{1} x (e^{x} + e^{-x}) dx$$

$$= \pi \int_{0}^{1} x d(e^{x} - e^{-x})$$

$$= \pi \left[x (e^{x} - e^{-x})|_{0}^{1} - \int_{0}^{1} (e^{x} - e^{-x}) dx\right]$$

$$= \pi \left[e - e^{-1} - (e + e^{-1} - 2)\right]$$

$$= 2\pi (1 - e^{-1}).$$
(4)

- Surfaces of revolution.
 - $y = f(x), \ a \le x \le b \text{ rotate around } x\text{-axis.}$

$$A = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'(x)^{2}} dx = \int [circumference] \cdot [infinitesimal arc length].$$
 (5)

Example 2. Surface area of the surface of revolution generated by $y^2 = 2x$, $0 \le x \le 4$,

- a) around x-axis;
- b) around y-axis.

Solution.

a) We have $f(x) = \sqrt{2x}$ and $f'(x) = \frac{1}{\sqrt{2x}}$. Thus

$$A = 2\pi \int_{0}^{4} \sqrt{2x} \sqrt{1 + \frac{1}{2x}} dx$$

$$= 2\pi \int_{0}^{4} \sqrt{1 + 2x} dx$$

$$= 2\pi \int_{0}^{4} \sqrt{1 + 2x} dx$$

$$= \frac{u = \sqrt{1 + 2x}}{2\pi} 2\pi \int_{1}^{3} u^{2} du$$

$$= \frac{52\pi}{3}.$$
(6)

b) Note that this is the same as rotating $y = \frac{x^2}{2}$ around x-axis for $-2\sqrt{2} \leqslant x \leqslant 2\sqrt{2}$. Therefore

$$A = 2\pi \int_{-2\sqrt{2}}^{2\sqrt{2}} \frac{x^2}{2} \sqrt{1+x^2} dx$$

$$= 2\pi \int_0^{2\sqrt{2}} x^2 \sqrt{1+x^2} dx$$

$$= u=x^2 - \pi \int_0^8 u^{1/2} (1+u)^{1/2} du.$$
(7)

Recalling the Chebyshev theorem of indefinite integral, we see that the integration can be done by setting $t = \left(\frac{u}{1+u}\right)^{1/2}$. Under this change of variable, we have

$$A = \pi \int_0^{2\sqrt{2}/3} \frac{1}{1-t^2} t \frac{2t}{(1-t^2)^2} dt$$
$$= 2\pi \int_0^{2\sqrt{2}/3} \frac{t^2}{(1-t^2)^3} dt.$$
(8)

Now from integration by parts of $\int \frac{\mathrm{d}t}{(1-t^2)^2}$ we have

$$\int \frac{t^2}{(1-t^2)^3} dt = \frac{1}{4} \left[\frac{t}{(1-t^2)^2} - \int \frac{dt}{(1-t^2)^2} \right]. \tag{9}$$

Now we apply partial fraction to calculate

$$\frac{1}{(1-t^2)^2} = \frac{A}{1+t} + \frac{B}{(1+t)^2} + \frac{C}{1-t} + \frac{D}{(1-t)^2} \Longrightarrow A = B = C = D = \frac{1}{4}.$$
 (10)

$$\int \frac{\mathrm{d}t}{(1-t^2)^2} = \frac{1}{4} \left[\ln \left(\frac{1+t}{1-t} \right) + \frac{2t}{1-t^2} \right] + C. \tag{11}$$

$$A = \frac{\pi}{2} \left[\frac{t}{(1-t^2)^2} - \frac{1}{4} \left[\ln \left(\frac{1+t}{1-t} \right) + \frac{2t}{1-t^2} \right] \right] \Big|_{t=0}^{t=2\sqrt{2}/3} = \frac{51\sqrt{2}\pi}{2} - \frac{\pi}{2} \ln \left(1 + \sqrt{2} \right). \tag{12}$$

Exercise 1. Alternatively, calculate A through $x = \tan t$ and through $A = \pi \int_0^8 \sqrt{u^2 + u} \, du = \frac{\sqrt{u^2 + u} = u + t}{u} \cdots$.