
Math 118 Winter 2015 Lecture 45 (Apr. 2, 2015)

Note. This lecture is based on Chapters 9 of Proofs from the Book byM. Aigner and G. M. Ziegler,
4th ed., Springer, 2010, and various online resources.

The problem. specify �two tetrahedra of equal bases and equal altitudes which
can in no way be split into congruent tetrahedra...�

David Hilbert, 1900.

� The Wallace-Bolyai-Gerwien Theorem.

Theorem 1. (Wallace-Bolyai-Gerwien) Consider two simple polygons in R2 with equal
area. Then one can be cut into �nitely many pieces and re-assemble to the other.

Proof. We will only sketch the proof here. See www.cut-the-
knot.org/do_you_know/Bolyai.shtml for more details as well as java animations. You can
also search �Bolyai-Gerwien Theorem� on youtube to see animation of the steps below.

We prove that any simple polygon inR2 can be cut and re-assemble into a square of equal
area in four steps.

Exercise 1. Explain why this is su�cient to prove the theorem.

1. Any simple polygon in R2 can be cut into �nitely many triangles.
This is a trivial statement that becomes not that trivial when you start to think

about it. One way to prove this is to pick a direction that is not parallel to any of the
sides of the polygon, and then cut with lines passing the vertices and in this direction.

Exercise 2. Prove that each piece after such �cutting� is either a triangle or a trapezoid, which
can be cut into two triangles.

2. Any triangle can be cut and re-assemble into �rst a parallelogram and then a rectangle
of equal area.

3. Any rectangle can be cut and re-assemble into a square of equal area.
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Exercise 3. Prove that h= c.

Exercise 4. What if, in the above, the line h intersects AB instead of BC?

Alternative proof.
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Exercise 5. Prove that x= c.

4. Any two squares can be cut and re-assemble into a square of area the sum of the areas
of the original two squares.1
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A simpler proof:
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Note that in this proof the pieces are only translated during the re-assembly. �

� Tarski's �circle squaring� problem.

The Problem. (Alfred Tarski 1925) Let B be the unit disk in R2

and let C be the square of area �. Is it possible to dissect B into �nitely many
pieces and re-assemble them into C?

1. In fact this step is not necessary, as from the previous step we already see that any rectangle can be cut and re-assemble
into any other rectangle with equal area, as a easy consequence any �nite collection of rectangles can be cut and re-assemble
together in to a square. But it is cool to see a �direct� proof of Pythagorean Theorem.



Remark 2. The background of this problem is as follows. Around 1900 people are trying to
understand measures � areas, volumes, etc. In 1924, Stefan Banach and Alfred Tarski showed
that one can dissect the unit ball in R3 into �nitely many pieces and then reassemble into
two unit balls. On the other hand, around the same time Banach proved that such things
cannot happen in 2D, where dissection-reassembly must leave areas unchanged. In light of the
Wallace-Bolyai-Gerwien Theorem above, one naturally asks whether any two plane shapes
of the same area can be dissected and reassembled into each other.

Theorem 3. (M. Laczkovich 1990) One can cut B into about 1050 di�erent pieces and
re-assemble them into C. Furthermore the pieces are only translated, not rotated, during the
re-assembly.

Remark 4. We should emphasize that Axiom of Choice is used in the proof and as a
consequence each of the 1050 pieces is �non-measurable� in the Lebesgue sense. In particular,
one cannot accomplish this using paper and scissors. See the post �What's wrong with this
solution of Tarski's circle-squaring problem?� for a quite clever proof. In fact, it has been
proved by Dubins, Hirsch, and Karush in 1963 that circle-squaring is not possible even if our
scissors can �cut� along any continuous curve.

� (Max Dehn 1902) A regular tetrahedron cannot be cut and re-assemble to a cube of same
volume.

Proof. 2Assume the contrary. Call the tetrahedron T and the cube C. We assume that T
can be cut into T1; :::; Tn and C into C1; :::; Cn such that Ti and Ci are congruent.

� The Pearl Lemma.

Lemma 5. It is possible to assigne a positive integer (number of �pearls�) to each
edge segment in the decompositions T =[Ti and C=[Ci such that each edge of Pi is
assigned the same number of �pearls� as the corresponding edge of Ci.

Remark 6. This lemma in fact holds in any dimension. Below is a 2D illustration.
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Here the claim is that there are positive integers x1; :::; x6; y1; :::; y6 satisfying

x1= y4; x2= y6; x6= y3; x6= y1; x3= y2; x4= y6; x5= y5: (1)

Proof. Assign a variable xi to each segment of the decomposition of T and yj to each
segment of the decomposition of Q. Thus we have a system of equationsX

some xi0s¡
X

some yj0s=0: (2)

2. Note that this is not Dehn's original proof.



The goal is to prove that there are xi; yj 2N satisfying this system.
We observe that if we relax and condition and ask for xi; yj 2R; xi; yj > 0, then

the existence of such numbers is trivial: We just take xi; yj to be the length of the
segments. The desired conclusion now follows from the following �cone lemma�.

Lemma 7. (Cone Lemma) If a system of homogeneous linear equations with integer
coe�cients has a positive real solution, then it also has a positive integer solution.

Proof. The proof uses induction and is a bit technical, see Chapters 9 of Proofs from
the Book . Here we make a few observations so that the claim feels less surprising.

i. (This is the most important observation!) If a system of homogeneous linear
equations has a positive rational solution, then it also has a positive integer
solution.

ii. As rational numbers are dense, it may be possible to �modify� the original
positive real solution a bit to make it rational.

iii. When the solution is unique of course such �modi�cation� is not possible.
However in this case this unique solution has to be 0. � �

� Bricard's condition.

Theorem 8. Let P ; Q be 3D polyhedra that can be cut and reassemble to each other,
and let �1; :::; �r and �1; :::; �s be the dihedral angles of P ; Q respectively. Then there
are positive integers m1; :::; mr, n1; :::; ns and k2Z such that

m1�1+ ���+mr�r=n1 �1+ ���+ns�s+ k�: (3)

Proof. Let �1 be the sum of all dihedral angles at each pearl for every Pi and �2 be
the sum of that for every Qj. Then �1=�2 as both are the same weighted sum of all
dihedral angles for all pieces. On the other hand we can �rst add the angles at each
pearl and then add the sum together. This gives

�1=m1�1+ ���+mr�r+ k1�; �2=n1 �1+ ���+ns�s+ k2� (4)

for some positive integers m1; :::; mr; n1; :::; ns and k1; k2 2 Z. The conclusion now
follows. �

� Finishing the proof.
For a regular tetrahedron all �i = arccos1

3
and for a cube all �j =

�

2
. Therefore

m arccos1
3
=n

�

2
+ k�=) arccos(1/3)

�
2Q:

Proposition 9. Let n> 3 be odd. Then 1

�
arccos

�
1

n
p

�
is irrational.

Proof. Denote 'n := arccos(1/ n
p

).

Exercise 6. Prove that cos(k'n)=
Ak

( n
p

)k
for some integer Ak not divisible by n. (Hint:3 )

If 'n=
l

k
� for some l; k2Z, cos(k'n)=�1=)jAkj=nk/2. Contradiction. �

Thus ends the proof. �

3. cos((k+1) 'n)+ cos((k¡ 1) 'n).
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