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Arc length of a graph.

Consider the graph of y= f(x),a<x<b. We try to establish a formula for the arc length
[ of this curve.

Let Pra=x0<x; <--<x,=> be an arbitrary partition of [a, b]. We connect the points
(zo, f(x0)), (1, f(x1)), ..., (xn, f(xy)) be straight line segments. The resulting polygonal
curve has length

WP)=>" V(wk— k1) + (For) — flex—1))2 (1)
k=1

Intuitively, we should accept the following:

i. [(P)<I. (A curve connecting two points is no shorter than the straight line connecting
the same two points)

ii. As P gets finer and finer (that is having more and more points), {(P) approaches .

Thus the following definition is reasonable:

DEFINITION 1. The arc length of the graph of y= f(x),a <z <b is defined as

[:=supl(P). (2)
P

THEOREM 2. Under the following assumptions on f,
i. f is continuous on |a,b];
it. f' is continuous on (a,b);
1t limg_ o1 f' and limg_,_ f' exist and are finite.

there holds

b
1= / VT @) de. (3)

Exercise 1. Is the continuity of f on [a, b] the consequence of the other two assumptions (on f’)? Justify
your claim.

Proof. Let P be an arbitrary partion of [a, b]. Then by MVT we have

Z(P):Z 1+<f($k)_f($k—l) )2 («Tk_l'k—l)zz /1+f/(ck)2 (mk—l'k—l) (4)
k=1 k=1

Tk — Tk—-1
where ¢k € (x—1, k). From this it is clear that
L(y/1+ f'(2)*, P) <UP)<U(V1+ f'(2)?, P). (5)

Taking supreme on both sides of the first inequality we have

/b VT F@Rdr<l. (6)

Exercise 2. Prove that \/1+ f’(z)? is Riemann integrable on [a, b].
On the other hand, we observe that



Exercise 3. Let P, @ be partitions of [a, b]. Then [((PUQ)>1(P).

From this and the property of Riemann upper sum, together with (5), we have, for
arbitrary partitions P, Q,

I(P)SUPUQ)SU(VI+ f(2)*, PUQ)<U(V1+ f(2)%,Q). (7)

As P, @) are arbitrary, we can take supreme on the left end and infimum on the right end,
to conclude

b
zg/ I+ ) da. (8)
Thus the proof ends. O

Arc length of parametrized curves.
More generally, a curve is represented as

(z(t),y(t),  a<t<b. (9)

If we similarly approximate by polygonal curves, we would finally reach

THEOREM 3. Under the following assumptions on x, v,
i. =,y are continuous on [a, b];
ii. 'y’ are continuous on (a,b);
1t limy s qyx’, limy o1/, limy_p_x" and limy_,_3y exist and are finite,

there holds

l—/b Va'(t)2+y'(t)? dt. (10)

Exercise 4. Prove Theorem 3.
Arc length of parametrized curves in polar coordinates.

o Please first review polar coordinates. For example read the wiki page for “Polar
coordinate system”.

In this case we have z(t) =r(t) cos(6(t)) and y(t) =r(t) sin(f(¢)) which leads to

THEOREM 4. Under the following assumptions on r,0,
i. 7,6 are continuous on [a, b];
ii. v',0" are continuous on (a,b);
it limy_qqr’, limy_, o1 0, limy 7" and limy_.,_0" exist and are finite,

there holds

l—/b V()24 r(t)?0'(t)? dt. (11)

In particular, when the curve is given by r=r(0), a <0 <b, the arc length is given by
b
- / 07+ 1(8)% df. (12)

Exercise 5. Prove Theorem 4.



Examples.

Example 5. Calculate the circumference of the unit circle 22 + y?=1.
Solution.

o Method 1. We calculate the curve length [ of the graph y=+v/1 — 22, —1 <z <1. Then

the circumference is 2.

I = /\/1+ Vi—a?) 2 dz
T

r=sint /2
/ o dt=m. (13)

So the circumference is 2 7.

Exercise 6. Note that f(x) = v/1— 122 does not fully satisfy the hypotheses in Theorem 2.
Explain why the above calculate is still reasonable and should give the correct answer.

o Method 2. We parametrize x(t) =cost, y(t) =sint,0 <t <27. Then

12/27r Va'(t)?+y'(t)?dt =2, (14)
0

Exercise 7. Calculate the arc length of x=cos, y=sin,t¢e[0,27).
Exercise 8. Calculate the arc length of the space curve

r=cost,y=sint, z=t. (15)

Example 6. Calculate the arc length of r=1+cosf, 0<0< 2.

Solution. We calculate

- /2ﬂ\/r’(9)2+r(9)2d0
0
= /27T V2 /14 cosh do

27
= / \/ cos?= d0
2m
[ / cos— do — / COS— dﬁ}
0

2
= 8.
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