
Math 118 Winter 2015 Lecture 38 (Mar. 20, 2015)

� Convex and Concave Functions

Definition 1. (Convex functions) A function f : [a; b] 7!R is convex if and only if

8x; y2 [a; b]; 8�2 [0; 1]; f(�x+(1¡�) y)6� f(x)+ (1¡�) f(y): (1)

Definition 2. (Concave functions) A function f : [a; b] 7!R is concave if and only if

8x; y2 [a; b]; 8�2 [0; 1]; f(�x+(1¡�) y)>� f(x)+ (1¡�) f(y): (2)

Exercise 1. What kind of function is both convex and concave over an interval [a; b]?

Exercise 2. What kind of function satis�es 8x; y 2 [a; b]; 8� 2 R; f(� x + (1 ¡ �) y) 6
� f(x)+ (1¡�) f(y)?

Proposition 3. f : [a; b] 7!R is convex if and only if g(x) :=¡f(x) is concave.

Proof. We prove �only if� and leave �if� as exercise.
Let f : [a; b] 7!R be convex. Let x; y 2 [a; b]; �2 [0; 1] be arbitrary. Then by de�nition of

g and convexity of f we have

g(�x+(1¡�) y) = ¡f(�x+(1¡�) y)
> ¡[� f(x)+ (1¡�) f(y)]
= � g(x)+ (1¡�) g(y): (3)

Thus ends the proof. �

Exercise 3. Prove the �if� part.

� The role of convexity in optimization.

Theorem 4. Let f(x) be convex on [a; b]. Then any local minimizer of the problem

min f(x) subject to a6x6 b (4)

is also global.

Proof. Let x0 be a local minimizer of the problem. Assume that it is not global. Then there
is x12 [a; b] such that f(x1)< f(x0). Wlog assume x1>x0. We also assume that x02 (a; b)
and leave the cases x0= a; x0= b as exercises.

Let � > 0 be arbitrary. There is �12 (0; �) such that x0+ �12 (x0; x1). We �nd �2 [0; 1]
such that x0 + �1 = � x0 + (1 ¡ �) x1. Moving x0 to the right hand side we easily obtain
�1=(1¡�) (x1¡x0) and therefore

x0+ �1=�x0+(1¡�)x1 (5)

for �= x1¡x0¡ �1
x1¡x0

2 (0; 1). Now by convexity of f we have

f(x0+ �1)6� f(x0)+ (1¡�) f(x1)<�f(x0)+ (1¡�) f(x0)= f(x0); (6)

a contradiction to the fact that x0 is a local minimizer. �

Exercise 4. Write down the detailed proof for the case x1<x0.



� Properties of convex functions.

1. f is convex on [a; b] () 8x1; :::; xn2 [a; b];8�1; :::; �n> 0; �1+ ���+�n=1,

f(�1x1+ ���+�nxn)6�1 f(x1)+ ���+�n f(xn): (7)

Proof. We prove =) and leave (=, which is trivial, as an exercise.
We prove by induction. The base case n=2 is exactly the de�nition of convexity.

Now assume that (7) holds for n¡ 1.
Let x1; :::; xn 2 [a; b] be arbitrary, �1; :::; �n > 0 be arbitrary but satisfying

�1+ ���+�n=1.
If one of �i= 0 then the situation reduces to the case n¡ 1. In the following we

assume �i> 0 for all i. Now by de�nition of convexity and the induction hypothesis
we have

f(�1x1+ ���+�nxn) = f

�
�1x1+(1¡�1)

�2x2+ ���+�nxn
1¡�1

�
6 �1 f(x1)+ (1¡�1) f

�
�2

1¡�1
x2+ ���+

�n
1¡�1

xn

�
6 �1 f(x1)+ (1¡�1)

�
�2

1¡�1
f(x2)+ ���+

�n
1¡�1

f(xn)
�

= �1 f(x1)+ ���+�n f(xn): (8)

There is one small gap in this proof which is left as exercise. �

Exercise 5. Why is �2x2+ ���+�n xn

1¡�1
2 [a; b]?

2. f is convex on [a; b] () 8a6x< y < z6 b, f(z)¡ f(y)

z¡ y
> f(y)¡ f(x)

y¡x () 8a6x< y <

z6 b, f(z)¡ f(x)

z¡x > f(y)¡ f(x)

y¡x .

Proof. We prove the second =) and leave others as exercises.
Let a 6 x < y < z 6 b. We �rst �nd � 2 (0; 1) such that y = � x + (1 ¡ �) z.

Subtracting x from both sides we have y ¡ x = (1 ¡ �) (z ¡ x) =) � = z¡ y

z¡x . By
convexity of f we have

f(y)6 z¡ y
z¡x f(x)+

y¡x
z¡x f(z) (9)

which simpli�es to f(z)¡ f(x)

z¡x > f(y)¡ f(x)

y¡x . �

Exercise 6. Prove the remaining relations.

3. f is convex on [a; b], then for every x0 2 (a; b), limx!x0+
f(x)¡ f(x0)

x¡x0
and

limx!x0¡
f(x)¡ f(x0)

x¡x0
exist and are �nite. In particular, f(x) is continuous on (a; b).

Proof. Let x02 (a; b) be arbitrary. Consider the function F : (x0; b) 7!R

F (x) := f(x)¡ f(x0)
x¡x0

: (10)

From the above property we see that

i. F is increasing;



ii. F (x)> f(a)¡ f(x0)

a¡x0
for all x2 (x0; b).

Therefore limx!x0+F (x) exists and is �nite. The proof for the left limit is similar. �

Exercise 7. Prove that f is continuous on (a; b).

Remark 5. Note that f does not need to be continuous on [a; b].

Exercise 8. Prove that f(x)=
�
x2 x2 (¡1; 1)
2 x=�1 is convex.

4. The following are simple consequences of Property 2:

Theorem 6. Let f be di�erentiable on (a; b). Then f is convex on (a; b) if and only
if f 0(x) is increasing on (a; b).

Exercise 9. Prove Theorem 6.

Theorem 7. Let f be twice i�erentiable on (a; b). Then f is convex on (a; b) if and
only if f 00(x)> 0 on (a; b).

Exercise 10. Prove Theorem 7.

Example 8. Applying Theorem 7 it is trivial to prove that f(x)=¡lnx is convex on
(0;1). Now taking arbitrary r1; :::; rn>0 and setting �i=

1

n
for i=1;2; :::; n, we have

¡ln
�
r1+ ���+ rn

n

�
6 ¡1

n
[ln(r1)+ ���+ ln(rn)]

= ¡ln
�
(r1���rn)1/n

�
: (11)

Exercise 11. Prove that

(r1���rn)1/n6
r1+ ���+ rn

n
: (12)

Exercise 12. Let a; b > 0 be arbitrary. Let p> 1 and q :=
p

p¡ 1 . Prove Young's inequality:

a b6 ap

p
+
bq

q
: (13)

Then prove Hölder's inequality: 8x1; :::; xn; y1; :::; yn> 0; p> 1; q=
p

p¡ 1 ;X
k=1

n

xk yk6
 X
k=1

n

xk
p

!
1/p
 X
k=1

n

yk
q

!
1/q

: (14)

(Hint:1 )

1. First show that wlog we can assume
P

k=1
n xk

p=
P

k=1
n yk

q=1.
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