MATH 118 WINTER 2015 LECTURE 38 (Mar. 20, 2015)

Convex and Concave Functions

DEFINITION 1. (CONVEX FUNCTIONS) A function f:[a, bl — R is convex if and only if

Vz,yela,b], VA€[0,1],  fAr+(1=Ny)<Af(z)+1-A) f(y). (1)

DEFINITION 2. (CONCAVE FUNCTIONS) A function f:[a, b]— R is concave if and only if
Vo,y€la,b], VA€[0,1],  fAz+A-A)y)=2Af(x)+(1-A) f(y). (2)

Exercise 1. What kind of function is both convex and concave over an interval [a, b]?

Exercise 2. What kind of function satisfies Vz, y € [a, b], VA € R, fhz+ 1 =Xy <
Af(e)+(1=A) f(y)?

PROPOSITION 3. f:[a,b]— R is convex if and only if g(z) :=— f(x) is concave.

Proof. We prove “only if” and leave “if” as exercise.
Let f:[a,b]— R be convex. Let x,y € [a, b], A € [0, 1] be arbitrary. Then by definition of
g and convexity of f we have

gAz+(1-=Ny) = —fQz+1-N)y)
z —[Aflx)+(1=A) f(y)]
= Aglz)+ (1 =X g(y). (3)
Thus ends the proof. O

Exercise 3. Prove the “if” part.

The role of convexity in optimization.

THEOREM 4. Let f(x) be convex on [a,b]. Then any local minimizer of the problem

min f(z) subject to a <z <b (4)

1s also global.

Proof. Let z( be a local minimizer of the problem. Assume that it is not global. Then there
is x1 € [a, b] such that f(x1) < f(zo). Wlog assume x1 > z9. We also assume that z¢ € (a, b)
and leave the cases rg=a, xg=1>0 as exercises.

Let § > 0 be arbitrary. There is §; € (0, ) such that z¢+ 1 € (xg, z1). We find A € [0, 1]
such that zo + 61 = A 29 + (1 — A) 1. Moving zp to the right hand side we easily obtain
01=(1—=A) (z1— z0) and therefore

x0+(51:)\x0+(1—)\)$1 (5)

for A= % (0,1). Now by convexity of f we have
f(@o+01) <A flzo) + (L= A) f21) <A f(wo) + (1 = A) f(zo0) = f(20), (6)
a contradiction to the fact that xg is a local minimizer. O

Exercise 4. Write down the detailed proof for the case x1 < xp.



. fis convex on [a,b] <= Va<z <y<z<b, /

. f is convex on [a, b], then for every zp € (a, b), limy .5+

Properties of convex functions.

1. fis convex on [a,b] <= Vi, ...,xp € [a, b,V AL, ..y Ay =0, A\ + -+ Ay =1,

f()\l .’L‘1+"‘+)\n$n) g)\l f(xl)—i-—i-)\nf(a:n) (7)

Proof. We prove = and leave <=, which is trivial, as an exercise.

We prove by induction. The base case n =2 is exactly the definition of convexity.
Now assume that (7) holds for n — 1.

Let zi, ..., x € [a, b] be arbitrary, A1, ..., A, = 0 be arbitrary but satisfying
M+ -+ A =1,

If one of A\; =0 then the situation reduces to the case n — 1. In the following we
assume \; > 0 for all i. Now by definition of convexity and the induction hypothesis
we have

FOLZ1+ 4 A zn) = f<A1561+(1—)\1) )\2$2+-..+)\nxn>

1—X;
< A1f<x1)+<1—A1>f< o )
1—X 1-— )\1
< Aklf($1)+'(1—'A1)[ A f(x2) + -+ An f(xn)]
1—X) 1—X)
= A f(z1) 44 An flan). (8)
There is one small gap in this proof which is left as exercise. ]

A2x2+ -+ AnZn c [CL b]?

Exercise 5. Why is T

()= fy) 5 fy) - f@=@)
z—y 7 y—=z

= Va<r<y<

s, 1O I@ S Sw) @)

z—x = y—x
Proof. We prove the second = and leave others as exercises.

Let a <z <y <z<b Wefirst find A\ € (0, 1) such that y=A Az + (1 — \) 2

Subtracting = from both sides we have y — 2 =(1 — A) (z —2) = A = z:i’ By
convexity of f we have

-y y—x
F) <22 @)+ =2 f(e) )
which simplifies to f(zi:i(x) > f(y;:i(x). O

Exercise 6. Prove the remaining relations.

f(z) = f(=0)

T —x0

and
f(z) = f(z0)

limg 40— prpm

exist and are finite. In particular, f(z) is continuous on (a, b).

Proof. Let 2 € (a,b) be arbitrary. Consider the function F: (z9,b) — R

Fla):= 1@ = (@) (10)

T —xg
From the above property we see that

i. F' is increasing;



ii F(IIJ)> f(a) = f(zo)
. /——550

a

for all z € (z0,b).

Therefore lim,_, 5,4+ F(x) exists and is finite. The proof for the left limit is similar. [J
Exercise 7. Prove that f is continuous on (a, b).

Remark 5. Note that f does not need to be continuous on [a, b|.

z? ze(-1,1)

is convex.
2 x==1

Exercise 8. Prove that f(z)= {

4. The following are simple consequences of Property 2:

THEOREM 6. Let f be differentiable on (a,b). Then f is convex on (a,b) if and only
if f'(z) is increasing on (a,b).

Exercise 9. Prove Theorem 6.

THEOREM 7. Let f be twice ifferentiable on (a,b). Then f is convex on (a,b) if and
only if f"(x) =0 on (a,b).

Exercise 10. Prove Theorem 7.

Example 8. Applying Theorem 7 it is trivial to prove that f(z)=—Inz is convex on

(0,00). Now taking arbitrary 1, ...,7, >0 and setting \; :% fori=1,2,...,n, we have

—ln<w> < —% [n(ry) 4 - +In(ry,)]
= —ln[(rl-urn)l/"]. (11)
Exercise 11. Prove that
(Tl...rn)l/ngw' (12)

Exercise 12. Let a,b>0 be arbitrary. Let p>1 and ¢q:= ﬁ. Prove Young’s inequality:

P pa
ab< @Y (13)
p q
Then prove Holder’s inequality: Va1, ..., Tn, Y1, -, Y >0, p>1, q=p—ﬁ17

n n 1/p n 1/q
Z Th Yk < (Z ffﬁ) (Z yfj) : (14)
k=1 k=1 k=1

(Hint:! )

1. First show that wlog we can assume Y}, 2R =>"7_; yi=1.
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