MATH 118 WINTER 2015 LECTURE 36 (Mar. 18, 2015)
e Recall

o We will focus on
min f(x) subject to a <z < b. (1)
Note. You should be able to “translate” everything into the context of max f(x)
subject to a <x <b.
o Global/local minimizer.
—  x0€ [a,b] is a global minimizer: Vz € [a, b], f(z)> f(zo);
— o€ [a,b] is a local minimizer: 30 > 0, Va € [a, b| N (zo— I, 20+ 0), f(z) > f(x0);
—  xo€ [a,b] is an interior local minimizer:
i. xo is a local minimizer;
ii. zo€ (a,b).
Exercise 1. Prove that 0 is not a local minimizer of min 2 subject to z € R. (Sol:! )

o Necessary condition for xg to be a local minimizer.

THEOREM. Let xg be an interior local minimizer. Assume f is differentiable on (a,b).
Then f'(x¢) =0.

Exercise 2. Prove: f’(z9) =0 if z is an interior local maximizer.

Exercise 3. Find a f(z) such that f’(zo) =0 for some zy but zo is neither a local minimizer
nor a local maximizer.

Example 1. Solve minz In?z subject to 0 <z < oo.

Solution. Solving (x1n%r)’ =0 we have 21 2=1,e~!. Compare

f(O):O, f(l):()) f(e_l)ze_l, f(OO):OO (2)
we see that the global minimum is 0 with two global minimizers 0, 1.

e  Which solutions to f/(xz) =0 are local minimizers?

o Note that when f’(zg) = 0, there are three cases: z is a local minimizer, a local
maximizer, or neither.

o First order conditions.

THEOREM 2. Let f be differentiable on (a,b). Let f'(xo) =0. Then:
— If there is 6 > 0 such that f'(x) <0 for xz € (xg — §, xo) and f'(x) =0 for
x € (xo,x0+0), then ¢ is a local minimizer;
— If there is 6 > 0 such that f'(x) > 0 for x € (xog — §, xo) and f'(x) <0 for
x € (xo,x0+0), then zg is a local maximizer;

Proof. We prove that first claim and leave the second one as exercise. Let x € (xg— 4,
xo+ d) be arbitrary, we will prove f(z) > f(zg). There are three cases:

1. x=mz9. We have f(z)= f(z0);

1. Let § >0 be arbitrary. Set x = —g. We have f(z)= —(g)3<0: £(0).



2. z€(xg—9,xp). By MVT we have
f({L') — f(*%'O) — f’(C) (3)

T — X0

for some c € (x,x9) C (o — 0§, x0). By assumption f/(c¢) <0. As z —x9<0 this
implies f(z)— f(x0) 2 0= f(z) = f(z0).
3. x € (xp,x0+0). The proof is almost identical to that of the previous case. O

Exercise 4. Let f be differentiable on (a,b). Let f’(xzo) =0. Further assume that there is 6 >0
such that f’(z)>0 for « € (xg—J, o). Prove that z¢ is not a local minimizer.

Exercise 5. Let f be differentiable on (a, b). Assume that there is 6 >0 such that f’(z) <0 for
z € (xo—9d,x0) and f'(x) >0 for = € (zg, zo+ ). Prove f'(x¢)=0.

Remark 3. Note that these conditions are not necessary. For example, x =0 is a
local minimizer to

minf(:c)::c2<1+sin%>, reR (4)

but for every 6 >0 there is z € (—4J,0) such that f’(x) > 0.
Example 4. We return to Example 1. We have f/(z)=Inz (Inz 4 1). Thus

— At x;=1: Take 5:%. We have f'(z) <0 Whean(%,l) and f'(z) >0 when

T € (1, %) Thus 1 is a local minimizer.

— Atazs=e ! Take 6=e"!. We have f'(z) >0 when z € (0,e~!) and f'(z) <0
when z € (e7!,2e71). Thus e~! is a local maximizer.

Second order conditions.

THEOREM 5. Let f be differentiable on (a, b). Let f'(x¢) = 0. Further assume that
f"(x0) exists. Then:

f"(x0) > 0= 0 is a local minimizer —> f"(x¢) > 0.

1"(x0) <0=> 20 is a local mazimizer = f"(x) <0.

Proof. Assume f”(zp) > 0. By definition this implies
’ iy
) - e

T—xQ Tr — X0

>0 (5)

which implies there is 6 > 0 such that for all 2 € (zo— 0,20+ 9) — {0}, L@ = w0 .

T — o
As f'(z9) = 0, we conclude that f'(z) < 0 for x € (9 — J, xo) and f'(x) > 0 for
x € (z0, xo+ 0). Now the conclusion follows from Theorem 2. O

Exercise 6. Prove f'(zq) <0= 1y is a local maximizer.

Exercise 7. Prove that f”(x0) >0=30 >0,Vz € (xo—d,x0+9) — {zo}, f(x)> f(x0). Then
use this to prove zg is a local maximizer = f"(x) < 0.

Example 6. We return to Example 1. We have f”(x) :2m—z+1. Thus
— Ataz;=1: f’(1)=1>0. Thus 1 is a local minimizer.

— Atazs=el. f’(e7!)=—e<0. Thus e~! is a local maximizer.



Examples.

Example 7. (WIRELESS COMMUNICATION) Consider a user between two cell phone towers
of height h with distance d part. Each tower broadcasts with power P. The user would like
to receive the signal from tower 1 but not 2. Thus we would like to maximize the signal-to-
noise ratio (SNR):

P/d} d3 (d—x)*+h?

SNR:P/dg_d_%_ 2 subject to 0 <z <d. (6)
\ dl d2 ////’///
A 2
T
Taking derivative we see that we should solve
—2(d—x) (22 +h?) —22[(d —2)*+ h?) =0 (7)

which gives z1 2= dEvd +ah7 “d22+4h2. Both are out of [0,d]. So we only need to check the end points
0, d and conclude that x should be 0.

Remark 8. This is quite silly. To make it (arguably) less silly we drop the constraint
d—/d®>+4n®
2

0 < x <d. This time we see that x9:= is the global maximizer.

Exercise 8. Prove the above statement.

Example 9. (CARRYING A POLE IN A HALLWAY) We consider the following problem. We
try to bring a long pole through the corner of the following hallway. What is the maximum
length of the pole that allows us to do so?

3m

3m




It is easy to see that the optimization problem reads

3 3

) ) T
- 4~ <0< —.
min/(0) cosd s’ subject to 0 <0 < 5 (8)
We calculate
gy 3sinf  3cosf 3 .3, 3
re)= cos20  sin20  cos20sin20 [sin”0 — cos°d]. (9)

As

sin®) — cos30 = [sin 6 — cos 6] [sin?@ + sinf cosd + cos?0] = [sin 6 — cos 0] [1 + % sin(2 0) ] (10)

the only solution to I'(6) =01is 0 = %. Thus the maximum length of the pole is 6 v/2 meters.

Exercise 9. Try to study more complicated situations, for example the hallway could be 3D.
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