MATH 118 WINTER 2015 LECTURE 33 (MAR. 11, 2015)

Midterm 2 Review: Infinite series of functions

- Definitions.
 - For sequences:
 - A number sequence $\{a_n\}$ convergens to $a \in \mathbb{R}$:

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n > N, \qquad |a_n - a| < \varepsilon.$$
 (1)

- A function sequence $\{f_n(x)\}$ converges to f(x) on [a,b]:

$$\forall x \in [a, b], \qquad \lim_{n \to \infty} f_n(x) = f(x). \tag{2}$$

Equivalently,

$$\forall x \in [a, b], \quad \forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n > N, \qquad |f_n(x) - f(x)| < \varepsilon.$$
 (3)

- A function sequence $\{f_n(x)\}$ converges uniformly to f(x) on [a, b]:

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n > N, \quad \forall x \in [a, b], \qquad |f_n(x) - f(x)| < \varepsilon.$$
 (4)

- For series:
 - A series $\sum_{n=1}^{\infty} a_n$ converges to $s \in \mathbb{R}$: Let $s_n := a_1 + a_2 + \dots + a_n$, $\lim_{n \to \infty} s_n = s$.
 - A function series $\sum_{n=1}^{\infty} u_n(x)$ converges to f(x) on [a, b]:

$$\forall x \in [a, b], \qquad \sum_{n=1}^{\infty} u_n(x) = f(x)$$
 (5)

or equivalently,

$$\forall x \in [a, b], \qquad \lim_{n \to \infty} S_n(x) = f(x) \tag{6}$$

where $S_n(x) := u_1(x) + u_2(x) + \dots + u_n(x)$.

A function series $\sum_{n=1}^{\infty} u_n(x)$ converges to f(x) uniformly on [a, b]: $S_n(x)$ converges uniformly to f(x) on [a, b].

Example 1. Find all $x \in \mathbb{R}$ such that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{1-x}{1+x}\right)^n$ converges.

Solution. Let $x \in \mathbb{R}$ be arbitrary. Set $r := \left(\frac{1-x}{1+x}\right)^n$. We know that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} r^n$ converges for |r| < 1 and diverges for |r| > 1. At r = 1 we have $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ which is convergent, while at r = -1 we have $\sum_{n=1}^{\infty} \frac{1}{n}$ which is divergent. Therefore $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{1-x}{1+x}\right)^n$ converges if and only if $-1 < \frac{1-x}{1+x} \le 1$ which is equivalent to $x \ge 0$.

- Checking uniform convergence of a sequence of functions.
 - o Methods.
 - 1. By definition:

First calculate $f(x) = \lim_{n\to\infty} f_n(x)$, then study whether it is true that

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n > N, \quad \forall x \in [a, b], \qquad |f_n(x) - f(x)| < \varepsilon.$$
 (7)

2. By Cauchy:

Study whether it is true that

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall m, n > N, \quad \forall x \in [a, b], \qquad |f_m(x) - f_n(x)| < \varepsilon.$$
 (8)

- 3. A practical method:
 - First calculate $f(x) = \lim_{n \to \infty} f_n(x)$;
 - Then calculate $M_n := \sup_{x \in [a,b]} |f_n(x) f(x)|;$
 - If $\lim_{n\to\infty} M_n = 0$ then $f_n(x) \longrightarrow f(x)$ uniformly on [a, b], otherwise the convergence is not uniform.

Example 2. Let $f_n(x) = \frac{n x}{1 + n + x}$.

- a) Calculate $\lim_{n\to\infty} f_n(x)$ on $(0,\infty)$.
- b) Is the convergence uniform? Justify your claim.

Solution.

a) Let $x \in (0, \infty)$ be arbitrary. We have

$$\lim_{n \to \infty} \frac{n x}{1 + n + x} = \lim_{n \to \infty} \left(\frac{n}{n + (1 + x)} \right) x = x. \tag{9}$$

b) We have

$$\left| \frac{n x}{1 + n + x} - x \right| = \frac{x + x^2}{1 + n + x}.$$
 (10)

Thus

$$M_n \geqslant \frac{n+n^2}{1+n+n} > \frac{n}{3n} = \frac{1}{3}.$$
 (11)

Thus $\lim_{n\to\infty} M_n$, if exists, must be greater or equal to $\frac{1}{3}$. Therefore $\lim_{n\to\infty} M_n = 0$ does not hold and the convergence is not uniform.

Exercise 1. Let R > 0 be arbitrary. Does $\frac{n x}{1 + n + x}$ converge to x uniformly on (0, R)?