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� Recall the theory of uniform convergence.

Theorem 1. (Properties of uniformly convergent series) Let
P

n=1
1 un(x) be a

in�nite series of functions. Assume . Then

i. If
P

n=1
1 un(x) converges uniformly on [a; b] to f(x) and each un(x) is continuous,

then f(x) is continuous on [a; b];

ii. If each un(x) is di�erentiable on (a; b) and

1.
P

n=1
1 un(x0) converges for some x02 (a; b);

2.
P

n=1
1 un

0 (x) converges to '(x) uniformly on (a; b),

then

1.
P

n=1
1 un(x) converges uniformly to some f(x) on (a; b),

2. f is di�erentiable and f 0(x)= '(x) on (a; b).

iii. If
P

n=1
1 un(x) converges uniformly to f(x) on [a; b] and each un(x) is integrable on

[a; b], then f(x) is integrable on [a; b] and furthermore

X
n=1

1 Z
a

b

un(x) dx=

Z
a

b

f(x) dx: (1)

� An example of trigonometric series.
We discuss the continuity, integrability, and di�erentiability of the function

f(x) :=
X
n=1

1
sin(nx)
n2

: (2)

1. The function is de�ned for all x2R.

Proof. Let x2R be arbitrary. Then we have���� sin(nx)n2

����6 1
n2
: (3)

As
P

n=1
1 1

n2
converges, by Comparison Theorem we have the convergence ofP

n=1
1 sin(nx)

n2
. �

2. The function is continuous on R.

Proof. We prove the convergence is uniform on R. This follows immediately from
(3), the convergence of

P
n=1
1 1

n2
, and Weierstrass' M-test.



Now since for each �xed n, sin(nx)
n2

is continuous on R, f(x) is also continuous on
R. �

3. The function is Riemann integrable on any compact interval [a; b]�R, and further-
more Z

a

b

f(x) dx=
X
n=1

1 Z
a

b sin(nx)
n2

dx: (4)

Proof. This follows immediately from the uniform convergence we have just proved.
�

4. The function is di�erentiable at every x=/ 2 k� (k 2Z), and furthermore at such x,

f 0(x)=
X
n=1

1
cos(nx)

n
: (5)

Proof. Since �
sin(nx)
n2

�0
=

cos(nx)
n

; (6)

all we need to show is the uniform convergence of

X
n=1

1
cos(nx)

n
: (7)

First it is clear that the series does not converge for x=2 k � for any k 2Z. Thus in
the following we focus on x=/ 2 k�.

To prove the convergence we apply Abel's re-summation trick:

� First we obtain a good formula for

Sn(x) := cosx+ ���+ cos(nx): (8)

We have

Sn(x) =
sin(x/2)
sin(x/2)

[cosx+ ���+ cos(nx)]

=
1

sin(x/2)
[sin(x/2) cosx+ ���+ sin(x/2) cos(nx)]

=
1

2 sin(x/2)

h�
sin

�
x +

x
2

�
¡ sin

�
x ¡ x

2

��
+ ��� +

�
sin

�
n x +

x
2

�
¡

sin
�
nx¡ x

2

��i
=

sin(nx+ x/2)

2 sin(x/2)
¡ 1/2: (9)

We see that for any compact interval [a; b] not containing 2 k �, there is
M =M(a; b) (that is, depending on a; b � more precisely depending on the
distance between a; b and the nearest 2 k�) such that

8n2N; 8x2 [a; b]; jSn(x)j<M: (10)



� Now we apply the re-summation trick. For any m>n, we have����cos((n+1)x)
n+1

+ ���+ cos(mx)
m

���� =

����Sn+1(x)¡ Sn(x)
n+ 1

+ ��� +

Sm(x)¡Sm¡1(x)
m

����
=

����Sm(x)m
¡ Sn(x)

n+1
+ Sn+1(x)

�
1

n+1
¡

1
n+2

�
+ ���+Sm¡1(x)

�
1

m¡ 1 ¡
1
m

�����
6 M

m
+

M
n+1

+M

��
1

n+1
¡ 1
n+2

�
+ ���+�

1
m¡ 1 ¡

1
m

��
=

2M
n+1

: (11)

Note that this holds for every x2 [a; b].
� Finally we prove uniform convergence.

Taking m!1 in the above estimate, we have (denote the limit function
by �(x))

8n2N; 8x2 [a; b]; j�(x)¡Sn(x)j6
2M
n+1

: (12)

Now let " > 0 be arbitrary. Take N >
2M

"
. Then for every n > N and every

x2 [a; b], we have

j�(x)¡Sn(x)j6
2M
n+1

<
2M
N

<": (13)

Thus Sn(x)¡! �(x) uniformly on [a; b].

Now take any x =/ 2 k �. There is a < x < b such that [a; b] does not contain any
2 k �. We see that

P
n=1
1 cos(nx)

n
converges uniformly on [a; b]. Consequently f(x) is

di�erentiable on (a; b) and in particular at x. �

5. The function is not di�erentiable at every x=2 k� (k 2Z).

Proof. Again thanks to periodicity, all we need to prove is f 0(0) does not exist. We
achieve this through proving

lim
m!1

f(1/m)¡ f(0)
1/m

=+1: (14)

Clearly f(0)= 0. We have

f(1/m)

1/m
=

X
n=1

1 sin
¡ n

m

�
n2/m

=
X
n=1

m
1
n
sin(n/m)
n/m

+m
X

n=m+1

1
sin(n/m)

n2
:

We denote the two sums by A and B.

� Estimate of A.



It is easy to prove that sinx
x

is decreasing on (0; �/2). Thus for each term
in A we have

n
m
6 1=) sin(n/m)

n/m
> sin 1

1
: (15)

Therefore

A> c
X
n=1

m
1
n

(16)

where c := (sin1)/1> 0 is a �xed constant.

� Estimate of B.
We have

jB j6m
X

n=m+1

1
1

n2
<m

X
n=m+1

1
1

(n¡ 1)n =m
X

n=m+1

1 �
1

n¡ 1 ¡
1

n

�
=1: (17)

Putting the estimates together, we have

f(1/m)
1/m

>c
X
n=1

m
1
n
¡ 1 (18)

whose limit is obviously1 as m!1.
Thus we have found a sequence xm¡! 0 such that

lim
m!1

f(xm)¡ f(0)
xm¡ 0

=+1 (19)

and it follows that f cannot be di�erentiable at 0. �

Exercise 1. Prove that limx!0
f(x)¡ f(0)

x¡ 0 =+1.

Exercise 2. Let f(x) :=
P

n=1

1 cos(nx)
n2

.

a) Find all x2R where f is continuous, justify.

b) Find all x2R where f is di�erentiable, justify.
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