## MATH 118 WINTER 2015 LECTURE 29 (MAR. 4, 2015)

• Recall the theory of power series.

THEOREM 1. Let  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  be a power series with radius of convergence R. Define  $f(x) := \sum_{n=0}^{\infty} a_n (x-x_0)^n$ . Then

- a) f(x) is continuous on  $(x_0 R, x_0 + R)$ .
- b) f(x) is differentiable on  $(x_0 R, x_0 + R)$ , and  $f'(x) = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x x_0)^n$  on  $(x_0 R, x_0 + R)$ .
- c) f(x) is infinitely differentiable on  $(x_0 R, x_0 + R)$ .
- d) Let  $[a, b] \subset (x_0 R, x_0 + R)$  be arbitrary. Then f(x) is integrable on [a, b] and furthermore

$$\int_{a}^{b} f(x) dx = \sum_{n=0}^{\infty} a_n \int_{a}^{b} (x - x_0)^n dx.$$
 (1)

Examples for power series.

**Example 2.** Calculate  $\sum_{n=1}^{\infty} n x^n$ .

**Solution.** It is easy to see that the radius of convergence is R = 1, and the series diverges at x = -1, 1. Thus in the following we only consider  $x \in (-1, 1)$ .

Recall that for such x,

$$\sum_{n=1}^{\infty} x^n = \frac{1}{1-x} \xrightarrow{\text{Differentiate}} \sum_{n=1}^{\infty} n \, x^{n-1} = \frac{1}{(1-x)^2}.$$
 (2)

Therefore

$$\sum_{n=1}^{\infty} n \, x^n = \frac{x}{(1-x)^2} \tag{3}$$

for all  $x \in (-1, 1)$ .

for  $x \in (-1, 1)$ .

Exercise 1. Prove

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \ln(1+x); \quad \arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}.$$
 (4)

**Example 3.** Let  $F_0 = F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ . We will find a formula for the general  $F_n$ .

Consider the power series  $\sum_{n=0}^{\infty} F_n x^n$ .

**Exercise 2.** Prove that  $0 \le F_n \le 2^{n-1}$ .

We see that the radius of convergence  $R \ge \frac{1}{2}$ . Thus we consider  $f(x) := \sum_{n=0}^{\infty} F_n x^n$  which is defined on  $\left(-\frac{1}{2}, \frac{1}{2}\right)$ . Now we have

$$(1-x-x^{2}) f(x) = \sum_{n=0}^{\infty} F_{n} x^{n} - x \sum_{n=0}^{\infty} F_{n} x^{n} - x^{2} \sum_{n=0}^{\infty} F_{n} x^{n}$$

$$= \sum_{n=0}^{\infty} F_{n} x^{n} - \sum_{n=1}^{\infty} F_{n-1} x^{n} - \sum_{n=2}^{\infty} F_{n-2} x^{n}$$

$$= F_{0} + F_{1} x + \sum_{n=2}^{\infty} F_{n} x^{n} - F_{0} x - \sum_{n=2}^{\infty} F_{n-1} x^{n} - \sum_{n=2}^{\infty} F_{n-2} x^{n}$$

$$= 1 + \sum_{n=2}^{\infty} (F_{n} - F_{n-1} - F_{n-2}) x^{n}$$

$$= 1 \Longrightarrow f(x) = \frac{1}{1 - x - x^{2}}.$$
(5)

As  $1-x-x^2=0 \Longrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}$ , we can write

$$\frac{1}{1-x-x^2} = \frac{A}{x+\frac{\sqrt{5}+1}{2}} + \frac{B}{x-\frac{\sqrt{5}-1}{2}} \tag{6}$$

and solve

$$A = \frac{1}{\sqrt{5}}, \qquad B = -\frac{1}{\sqrt{5}}.$$
 (7)

Now we calculate

$$\frac{1}{\sqrt{5}} \frac{1}{x + \frac{\sqrt{5} + 1}{2}} = \frac{1}{\sqrt{5}} \frac{2}{\sqrt{5} + 1} \sum_{n=0}^{\infty} \left( -\frac{2}{\sqrt{5} + 1} \right)^n x^n \tag{8}$$

$$\frac{1}{\sqrt{5}} \frac{1}{x - \frac{\sqrt{5} - 1}{2}} = -\frac{1}{\sqrt{5}} \frac{2}{\sqrt{5} - 1} \sum_{n=0}^{\infty} \left(\frac{2}{\sqrt{5} - 1}\right)^n x^n. \tag{9}$$

Thus we have

$$F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{\sqrt{5} + 1}{2} \right)^{n+1} - (-1)^{n+1} \left( \frac{\sqrt{5} - 1}{2} \right)^{n+1} \right]. \tag{10}$$

Example 4. Define

$$E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
(11)

Then E(x+y) = E(x) E(y).

**Exercise 3.** Prove that E(x) is defined for all  $x \in \mathbb{R}$  and E'(x) = E(x).

**Proof.** First we notice that

$$E(x) \geqslant 1 - |x| - |x|^2 - \dots = 1 - \frac{|x|}{1 - |x|} > 0$$
(12)

for all  $|x| < \frac{1}{2}$ . Now fix an arbitrary  $y \in \left(-\frac{1}{2}, \frac{1}{2}\right)$  and consider  $x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ . Let

$$f(x) := \frac{E(x+y)}{E(x)E(y)}. (13)$$

Then we have f(0) = 1 and

$$f'(x) = \frac{E(x+y) E(x) E(y) - E(x) E(y) E(x+y)}{E(x)^2 E(y)^2} = 0$$
(14)

therefore E(x+y)=E(x) E(y) for all  $x,y\in\left(-\frac{1}{2},\frac{1}{2}\right)$ . This implies E(x)>0 for all  $x\in(-1,1)$ . Repeating the above argument we have E(x+y)=E(x) E(y) for all  $x,y\in(-1,1)$  and so on.

## Exercise 4. Define

$$S(x) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \qquad C(x) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$
 (15)

Prove

- a) S(x) and C(x) are both infinitely differentiable on  $\mathbb{R}$ ;
- b) S'(x) = C(x), C'(x) = -S(x);
- c) S(x+y) = S(x) C(y) + C(x) S(y); C(x+y) = C(x) C(y) S(x) S(y);
- d)  $S^2(x) + C^2(x) = 1$ ;
- e) There is exactly one  $x_0 > 0$  such that  $C(x_0) = 0$ , C(x) > 0 for  $x \in [0, x_0)$ ; (Hint: 1)
- f)  $S(x_0) = 1$ :
- g)  $S(2x_0-x) = S(x)$ ,  $C(2x_0-x) = -C(x)$ ;
- h)  $S(x) \neq 0$  on  $(0, 2x_0)$  and  $(2x_0, 4x_0)$ . (Hint:<sup>2</sup>)
- i)  $\forall x \in \mathbb{R}$ ,  $S(x+4x_0) = S(x)$ ,  $C(x+4x_0) = C(x)$ , and  $4x_0$  is the smallest positive number having this property.

<sup>1.</sup> Apply MVT to S(x) on [0,2] to conclude there is  $|C(\xi)| \leq \frac{1}{2}$ . Then prove  $C(2\xi) < 0$ . Then apply IVP to  $C(\xi)$ .

<sup>2.</sup> Assume the contrary. Apply MVT to conclude  $C(\xi_1) = C(\xi_2) = 0$ . At least one  $\xi$  is different from  $x_0$ .