MATH 118 WINTER 2015 LECTURE 29 (Maxr. 4, 2015)

Recall the theory of power series.

THEOREM 1. Let ZZO:O an (x — z0)™ be a power series with radius of convergence R. Define

an (x —x9)". Then

f(z):= ZZO:O

a) f(x) is continuous on (xo— R,zo+ R).

b) f(x) is differentiable on (xo— R,zo+ R), and f'(z)=>_"

(ro— R,z0+ R).

meo (n+1) any1 (. —x0)" on

¢) f(x) is infinitely differentiable on (xo— R,xo+ R).

d) Let [a, b] C (x0 — R, ®o + R) be arbitrary. Then f(z) is integrable on [a, b] and

furthermore

Lb f(zx) dx—ni;o anlb (z — o)™ dz.

Examples for power series.

n

Example 2. Calculate >>°  na™.

(1)

Solution. It is easy to see that the radius of convergence is R =1, and the series diverges
at x=—1,1. Thus in the following we only consider z € (—1,1).

Recall that for such =z,

Therefore

o X
nx=
2Ty

for all z € (—1,1).

Exercise 1. Prove
bl n

(_1)7171%:111(1-1-:0); arctan o
=1

n

for z € (—1,1).

ad 1 Differentiate 1
n__ urerentiate n—l_
Zx Cl-x an  (1—-2)%

:f: (_1)71 $2n+1
— 2n+1 ’

Example 3. Let Fp=Fi=1and F,,=F,,_1+ F,_o for n>2. We will find a formula for the

general F,.

Consider the power series > = F;, 2"

Exercise 2. Prove that 0 < F,, <27 1.



We see that the radius of convergence R > % Thus we consider f(z):=3""° | F,, 2" which

is defined on ( 1 l). Now we have

272
(1—z—2% f(z) = Zan"—a}Z an"—xQZ E,a"
nO:oo og—(] o(r)z:O
= an”—z F,_1x —Z F,_ox
n=0 n:l n=2
= F0+F1$+ZF x —F(]{L'—Z F,_1x2" —Z F,_ox™
~ n=2 n=2 n=2
= 1+Z(Fn Fn_1 Fn—2)$
n=2 1
= 1= f(x) T—
As 1—a;—a;2:0:>a;1,2:_1§\/5,wecanwrlte
1 _ A + B
5=
l—x—2z? V641 V51
2 2
and solve
1 1
A=—, B=—
V5 V5

Now we calculate

Thus we have

Example 4. Define

Then E(z+y)=E(z) E(y).
Exercise 3. Prove that E(x) is defined for all x € R and E’'(z) = E(z).
Proof. First we notice that
E(z)>1- o]~ a2 — - =1- 2L 50

1 — ||

11

for all |z| < =. Now fix an arbitrary y € <——, 5) and consider = € (—5 —) Let

_ E@+y)
F@) = Fa )

(13)



Then we have f(0)=1 and
Fila) =Bty B@) E(y) - E(z) E(y) B +y)

=0 (14)

therefore E(x+y)=E(z) E(y) forallz,y € . This implies E(x) >0 forall x € (—1,1).

Repeating the above argument we have E(z + y) = E(z) E(y) for all z,y € (—1,1) and so
on. O

H/—\
wl

\—/wl)—n

Il v

Exercise 4. Define

Z:: 2n+1 it O)=) ((;L))?x% (15)

n=0
Prove

S(z) and C(z) are both infinitely differentiable on R;

a)

b) §'(z) =C(x), C'(x) = =S (x);

¢) S(z+y)=5(x) ()+C($)S(y);C($+y):C(l’)C(y)*S(QJ)S(y);

d) §%(z) +C*(z) =

e) There is exactly one zo> 0 such that C(x¢) =0, C(z) >0 for = € [0, x0); (Hint:' )
f) S(zo)=1;

g) SRzo—z)=5(z), C(2xp—z)=—-C(x);

h) S(z)#0 on (0,2z¢) and (2z9,4xo). (Hint:? )

i)

i) Ve e R, S(z+4xz0) =S(x),C(zx+4x9) =C(x), and 4 xg is the smallest positive number having
this property.

2. Assume the contrary. Apply MVT to conclude C'(&1)

2

1. Apply MVT to S(z) on [0,2] to conclude there is |C(§)| < 5. Then prove C(2 &) < 0. Then apply IVP to C(§).
=C(&)=0. At least one ¢ is different from zo.
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