
Math 118 Winter 2015 Lecture 28 (Mar. 2, 2015)

� Power series.

� Recall that a power series is a special kind of in�nite series of functions where each
un(x) = an (x¡ x0)n with an 2R and x0 2R independent of n. Thus a power series
looks like X

n=0

1
an (x¡x0)n (1)

which is a shorthand for the in�nite sum

a0+ a1 (x¡x0)+ a2 (x¡x0)2+ ��� (2)

Exercise 1. Consider the power series
P

n=0

1 an (x¡x0)n and
P

n=0

1 anxn. Prove that

a) the former converges at c if and only if the latter converges at c¡x0;
b) the former converges uniformly on [a; b] if and only if the latter converges uniformly on

[a¡x0; b¡x0].

� Radius of convergence.

Theorem 1. Let
P

n=0
1 an (x ¡ x0)n be a power series. Define R :=¡

limsupn!1 janj1/n
�¡1. Then

a) The power series converges for jx¡x0j<R and diverges for jx¡x0j>R.

b) Let 0 < r < R be arbitrary. Then the power series converges uniformly on
[x0¡ r; x0+ r].

Proof. For a) see 117 notes. We prove the new conclusion b).
Let 0 < r < R be arbitrary. De�ne r1 :=

R+ r

2
. Then we have 0 < r < r1 < R.

Therefore
P

n=0
1 an (x ¡ x0)n converges at x0 + r1 which gives the convergence ofP

n=0
1 an r1

n and consequently limn!1an r1
n=0.

Exercise 2. Prove that there is M > 0 such that for all n2N, jan r1nj6M .

Therefore for all n2N, janj6 M

r1
n . Now we have

8x2 [x0¡ r; x0+ r]; jan (x¡x0)nj6
M
r1
n r

n=M�n (3)

where � := r

r1
2 (0; 1).

Exercise 3. Prove that
P

n=0

1 M�n converges.

Thus by Weierstrass' theorem
P

n=0
1 an r1

n converges uniformly on [x0 ¡ r; x0 +
r]. �

Exercise 4. Let
P

n=0

1
an (x ¡ x0)

n be a power series with radius of convergence R. Let
[a; b]� (x0¡R; x0+R) be arbitrary. Then

P
n=0

1
an (x¡x0)n converges uniformly on [a; b].

� Application of uniform convergence theory.

Theorem 2. Let
P

n=0
1 an (x¡x0)n be a power series with radius of convergence R. De�ne

f(x) :=
P

n=0
1 an (x¡x0)n. Then

a) f(x) is continuous on (x0¡R; x0+R).



b) f(x) is di�erentiable on (x0¡R;x0+R), and f 0(x)=
P

n=0
1 (n+1) an+1 (x¡x0)n on

(x0¡R; x0+R).

c) f(x) is in�nitely di�erentiable on (x0¡R; x0+R).

d) Let [a; b] � (x0 ¡ R; x0 + R) be arbitrary. Then f(x) is integrable on [a; b] and
furthermore Z

a

b

f(x) dx=
X
n=0

1

an

Z
a

b

(x¡x0)ndx: (4)

Proof. We prove a), b) and leave c), d) as exercises.

a) Let x2 (x0¡R;x0+R) be arbitrary. All we need to prove is that f(x) is continuous
at x. As � :=min fj(x0+R)¡xj; j(x0¡R)¡xjg> 0, we have

x2 (x0¡ r; x0+ r)� [x0¡ r; x0+ r]� (x0¡R; x0+R) (5)

for r :=R¡ �

2
. By Theorem 1

P
n=0
1 an (x¡x0)n converges uniformly on [x0¡r;x0+r].

As for every n, an (x¡x0)n is contiuous on [x0¡ r; x0+ r], we have f(x) continuous
on [x0¡ r; x0+ r] and thus in particular continuous at x.

b) Let x2 (x0¡R;x0+R) be arbitrary. Let r be de�ned as in a). Then
P

n=0
1 an (x¡x0)n

converges uniformly on [x0¡ r; x0+ r].
Now considerX
n=0

1

(an (x¡x0)n)0=
X
n=0

1

nan (x¡x0)n¡1=
X
n=0

1

(n+1) an+1 (x¡x0)n: (6)

As this is again a power series, we calculate its radius of convergence R1.

Exercise 5. Prove that R1=R.

As R1=R,
P

n=0
1 (an (x¡x0)n)0 also converges uniformly on [x0¡ r; x0+ r]. Thus

f(x) is di�erentiable on (x0¡ r; x0+ r) and in particular di�erentiable at x. �

Exercise 6. Prove c) and d) of Theorem 2.
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