- Power series.
 - Recall that a power series is a special kind of infinite series of functions where each $u_n(x) = a_n (x - x_0)^n$ with $a_n \in \mathbb{R}$ and $x_0 \in \mathbb{R}$ independent of n. Thus a power series looks like

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n \tag{1}$$

which is a shorthand for the infinite sum

$$a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$
(2)

Exercise 1. Consider the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ and $\sum_{n=0}^{\infty} a_n x^n$. Prove that

- a) the former converges at c if and only if the latter converges at $c x_0$;
- b) the former converges uniformly on [a, b] if and only if the latter converges uniformly on $[a - x_0, b - x_0].$
- Radius of convergence. 0

THEOREM 1. Let $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be a power series. Define R := $(\limsup_{n\to\infty} |a_n|^{1/n})^{-1}$. Then

- a) The power series converges for $|x x_0| < R$ and diverges for $|x x_0| > R$.
- b) Let 0 < r < R be arbitrary. Then the power series converges uniformly on $[x_0 - r, x_0 + r].$

Proof. For a) see 117 notes. We prove the new conclusion b). Let 0 < r < R be arbitrary. Define $r_1 := \frac{R+r}{2}$. Then we have $0 < r < r_1 < R$. Therefore $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges at $x_0 + r_1$ which gives the convergence of $\sum_{n=0}^{\infty} a_n r_1^n$ and consequently $\lim_{n\to\infty} a_n r_1^n = 0$.

Exercise 2. Prove that there is M > 0 such that for all $n \in \mathbb{N}$, $|a_n r_1^n| \leq M$.

Therefore for all $n \in \mathbb{N}$, $|a_n| \leq \frac{M}{r_1^n}$. Now we have

$$\forall x \in [x_0 - r, x_0 + r], \qquad |a_n (x - x_0)^n| \leq \frac{M}{r_1^n} r^n = M \theta^n$$
(3)

where $\theta := \frac{r}{r_1} \in (0, 1).$

Exercise 3. Prove that $\sum_{n=0}^{\infty} M\theta^n$ converges.

Thus by Weierstrass' theorem $\sum_{n=0}^{\infty} a_n r_1^n$ converges uniformly on $[x_0 - r, x_0 +$ r].

Exercise 4. Let $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be a power series with radius of convergence R. Let $[a, b] \subset (x_0 - R, x_0 + R)$ be arbitrary. Then $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges uniformly on [a, b].

Application of uniform convergence theory.

THEOREM 2. Let $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ be a power series with radius of convergence R. Define $f(x) := \sum_{n=0}^{\infty} a_n (x-x_0)^n$. Then

a) f(x) is continuous on $(x_0 - R, x_0 + R)$.

- b) f(x) is differentiable on $(x_0 R, x_0 + R)$, and $f'(x) = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x x_0)^n$ on $(x_0 R, x_0 + R)$.
- c) f(x) is infinitely differentiable on $(x_0 R, x_0 + R)$.
- d) Let $[a, b] \subset (x_0 R, x_0 + R)$ be arbitrary. Then f(x) is integrable on [a, b] and furthermore

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{n=0}^{\infty} a_n \int_{a}^{b} (x - x_0)^n \, \mathrm{d}x.$$
(4)

Proof. We prove a), b) and leave c), d) as exercises.

a) Let $x \in (x_0 - R, x_0 + R)$ be arbitrary. All we need to prove is that f(x) is continuous at x. As $\delta := \min \{ |(x_0 + R) - x|, |(x_0 - R) - x| \} > 0$, we have

$$x \in (x_0 - r, x_0 + r) \subset [x_0 - r, x_0 + r] \subset (x_0 - R, x_0 + R)$$
(5)

for $r := R - \frac{\delta}{2}$. By Theorem 1 $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges uniformly on $[x_0 - r, x_0 + r]$. As for every n, $a_n (x - x_0)^n$ is continuous on $[x_0 - r, x_0 + r]$, we have f(x) continuous on $[x_0 - r, x_0 + r]$ and thus in particular continuous at x.

b) Let $x \in (x_0 - R, x_0 + R)$ be arbitrary. Let r be defined as in a). Then $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges uniformly on $[x_0 - r, x_0 + r]$.

Now consider

$$\sum_{n=0}^{\infty} (a_n (x-x_0)^n)' = \sum_{n=0}^{\infty} n a_n (x-x_0)^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x-x_0)^n.$$
(6)

As this is again a power series, we calculate its radius of convergence R_1 .

Exercise 5. Prove that $R_1 = R$.

As $R_1 = R$, $\sum_{n=0}^{\infty} (a_n (x - x_0)^n)'$ also converges uniformly on $[x_0 - r, x_0 + r]$. Thus f(x) is differentiable on $(x_0 - r, x_0 + r)$ and in particular differentiable at x. \Box

Exercise 6. Prove c) and d) of Theorem 2.