MATH 118 WINTER 2015 HOMEWORK 6 SOLUTIONS

DUE THURSDAY MAR. 5 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Calculate the following.

- a) (2 PTS) $\lim_{n\to\infty} \frac{1}{1+x^n}$ on $\{x | x \ge 0\};$
- b) (3 PTS) $\lim_{n\to\infty} e^{-nx} (1+x^2)^n$ on $\{x | x \ge 0\}$.

Solution.

a) We know that

$$\lim_{n \to \infty} x^n = \begin{cases} 0 & x \in [0, 1) \\ 1 & x = 1 \\ +\infty & x > 1 \end{cases}$$
(1)

Consequently

$$\lim_{n \to \infty} \frac{1}{1+x^n} = \begin{cases} 1 & x \in [0,1) \\ \frac{1}{2} & x = 1 \\ 0 & x > 1 \end{cases}$$
(2)

b) When x = 0 we have the limit to be 1. For an arbitrary x > 0, we have $e^{-nx} (1 + x^2)^n = [e^{-x} (1 + x^2)]^n$. We see that it depends whether $e^{-x} (1 + x^2)$ is greater than, equal to, or less than 1.

Let $u(x) := e^{-x} (1 + x^2)$. We calculate

$$[e^{-x}(1+x^2)]' = [-(1+x^2)+2x]e^{-x} = -(x-1)^2e^{-x} \le 0.$$
(3)

Therefore u(x) is decreasing for all x > 0. Furthermore for $x \in (0, 1)$, we have u'(x) < 0 which means u(x) < u(0) = 1 for $x \in (0, 1)$. Now for every $x \in [1, \infty)$ we have u(x) < u(1/2) < 1.

Thus $u(x) \in (0,1)$ for all x > 0 and consequently $\lim_{n \to \infty} u(x)^n = 0$ for all x > 0.

 So

$$\lim_{n \to \infty} e^{-nx} \, (1+x^2)^n = \begin{cases} 1 & x=0\\ 0 & x>0 \end{cases}.$$
(4)

QUESTION 2. (5 PTS) Let $f_n(x)$ converge to f(x) uniformly on [a, b]. Prove that $\lim_{n\to\infty} f_n(x) = f(x)$ on [a, b].

Proof. Let $x_0 \in [a, b]$ be arbitrary. Let $\varepsilon > 0$ be arbitrary. As $f_n(x)$ converge to f(x) uniformly on [a, b], there is $N_1 \in \mathbb{N}$ such that for all $n > N_1$ and $x \in [a, b]$, $|f_n(x) - f(x)| < \varepsilon$. Now take $N = N_1$. We have for all n > N and all $x \in [a, b]$, $|f_n(x) - f(x)| < \varepsilon$. In particular for all n > N, $|f_n(x_0) - f(x_0)| < \varepsilon$. Therefore $\lim_{n \to \infty} f_n(x_0) = f(x_0)$ and the conclusion follows.

QUESTION 3. (5 PTS)

- a) (2 PTS) Prove that $\sum_{n=1}^{\infty} e^{-nx} \sin(n^2 x)$ converges on $[0,\infty)$.
- b) (3 PTS) Is the convergence uniform? Justify your claim.

Solution.

a) When x = 0 we have $e^{-nx} \sin(n^2 x) = 0$ for all n so the limit is 0. When x > 0 we have

$$|e^{-nx}\sin(n^2x)| \leq (e^{-x})^n.$$
 (5)

As x > 0, $e^{-x} \in (0,1)$ and therefore $\sum_{n=1}^{\infty} (e^{-x})^n$ converges. Consequently $\sum_{n=1}^{\infty} e^{-nx} \sin(n^2 x)$ converges. In summary, $\sum_{n=1}^{\infty} e^{-nx} \sin(n^2 x)$ converges on $[0, \infty)$.

b) We claim that the convergence is not uniform. To do this we show that $|e^{-nx} \sin(n^2 x)|$ does not converge to 0 uniformly. Let $N \in \mathbb{N}$ be arbitrary. Set n = 2N and $x = n^{-2}$. Then we have

$$|e^{-nx}\sin(n^2x) - 0| = e^{-\frac{1}{n}}\sin(1) > e^{-1}\sin(1) > 0.$$
(6)

QUESTION 4. (5 PTS) Let $f_n(x)$, $f(x): [0, \infty) \mapsto \mathbb{R}$. Further assume $\lim_{x\to\infty} f_n(x) = 0$ for every $n \in \mathbb{N}$ and $\lim_{n\to\infty} f_n(x) = f(x)$ on $[0, \infty)$.

- a) (2 PTS) Does it follow that $\lim_{x\to\infty} f(x) = 0$? Justify your claim.
- b) (3 PTS) If instead of convergence we assume $f_n(x)$ converges to f(x) uniformly on $[0, \infty)$, does it follow that $\lim_{x\to\infty} f(x) = 0$? Justify your claim.

Solution.

- a) No. Consider $f_n(x) = \begin{cases} 1 & x \in [0, n] \\ 0 & x \in (n, \infty) \end{cases}$. Then we have $\lim_{x \to \infty} f_n(x) = 0$ and $\lim_{n \to \infty} f_n(x) = f(x) = 1$. But $\lim_{x \to \infty} f(x) = 1 \neq 0$.
- b) Yes. Let $\varepsilon > 0$ be arbitrary. As $f_n(x)$ converges to f(x) uniformly on $[0, \infty)$, there is $N \in \mathbb{N}$ such that for all n > N and all $x \in [0, \infty)$, $|f_n(x) f(x)| < \frac{\varepsilon}{2}$. In particular, there is $n_0 \in \mathbb{N}$ such that $|f_{n_0}(x) f(x)| < \frac{\varepsilon}{2}$. As $\lim_{x \to \infty} f_{n_0}(x) = 0$, there is $R_1 > 0$ such that for all $x > R_1$, $|f_{n_0}(x)| < \frac{\varepsilon}{2}$.

Now set $R = R_1$. For all x > R, we have

$$|f(x)| \leq |f_{n_0}(x)| + |f_n(x) - f(x)| < \varepsilon.$$
 (7)

Thus by definition $\lim_{x\to\infty} f(x) = 0$.