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� One more example.

Example 1. Study
P

n=1
1 sinnx

n
.

� First notice that
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���6 1

n
does not lead to any conclusion as
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1 1
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=+1.

Remark. Note that for most x, there is no p> 1 such that
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np
holds for all

n2N as limsupn!1 jsin(nx)j=1.

� To be able to deal with
P

n=1
1 sinnx

n
, we need the technique of �Abel's resummation�:X
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n
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where

Ak := a1+ a2+ ���+ ak: (2)

� Now let x2R be arbitrary. Set an := sinnx and bn=
1

n
. We have following (1)
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sinkx
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We will try to prove using (3) that fSng is Cauchy.

� First notice that when x = 2m � for some m 2 Z, Sn = 0 for all n and is therefore
Cauchy.

� Next we claim that, if there is M > 0 such that jAnj 6 M for all n 2 N, then
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Proof. Let "> 0 be arbitrary. Set N >
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. Then for every m>n>N , we have
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Thus ends the proof. �

� Finally we prove that, for any x =/ 2 m �, there is M > 0 such that for all n 2 N,
jAnj= jsinx+ ���+ sinnxj6M .
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This gives

8n2N; jAnj6
1��sinx
2

�� =:M: (6)

Note that when x=/ 2m�, sinx
2
=/ 0 so M is indeed a �nite number.

� Uniform convergence.

� Motivation.
Let fn(x) converge to f(x) on [a; b]. Is it possible to draw conclusion about

continuity, di�erentiability, integrability of f from those of fn?

Example 2. Consider the following.

1. For every n2N, fn(x)=xn is continuous on [0;1]. But f(x)= limn!1fn(x)=�
1 x=1
0 x2 [0; 1) is not continuous on [0; 1].

2. For every n 2 N, fn(x) = n x (1 ¡ x2)n is integrable on [0; 1]. f(x) =
limn!1fn(x)= 0 is also integrable on [0; 1]. But

lim
n!1

Z
0

1

fn(x) dx=
1
2
=/ 0=

Z
0

1

f(x) dx: (7)

Exercise 1. Prove limn!1
R
0

1
fn(x) dx=

1

2
.

3. For every n 2 N, fn(x) = limm!1 (cos(n! � x))2m =
�
1 n!� x2Z
0 otherwise

is

integrable on [0;1]. But limn!1fn(x)=
�
1 x2Q
0 x2/Q is not Riemann integrable

on [0; 1].

Exercise 2. Prove limm!1 (cos(n!�x))2m=
�
1 n! �x2Z
0 otherwise

.

� To be able to draw conclusion about continuity, di�erentiability, integrability of f
from those of fn, we need a stronger kind of convergence.

� Uniform convergence of function sequences.

Definition 3. (Uniform convergence) We say fn(x) converge to f(x) uniformly
on [a; b] if and only if

8"> 0; 9N 2N; 8x2 [a; b]; 8n>N ; jfn(x)¡ f(x)j<": (8)

Example 4. Prove that fn(x)=
x

1+n2 x
converge to 0 uniformly on (0;1).



Proof. Let " > 0 be arbitrary. Set N > "¡1/2. Then for every x 2 (0;1) and every
n>N we have

jfn(x)¡ 0j=
x

1+n2x
<

1
n2

<
1
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Thus ends the proof. �

Example 5. Prove that fn(x)=xn does not uniformly converge to 0 on (0; 1).

Proof. First we write down the working negation: fn does not uniformly converge to
f on [a; b] if and only if

9"0> 0; 8N 2N; 9x2 [a; b]; 9n>N ; jfn(x)¡ f(x)j> "0: (10)

Now let "0=
1

2
. Let N 2N be arbitrary. Now set n=2N >N; x=

�
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�
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we have

jxn¡ 0j= 1
2
> "0: (11)

Thus ends the proof. �
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