MATH 118 WINTER 2015 LECTURE 24 (FeB. 23, 2015)

e Please review the concepts of limit of sequences and convergence of infinite series.

e Motivation

o Solving algebraic equations (Newton’s method)

Example 1. Solve 43 —2y —5=0.
Solution. First we try integers. The best is y = 2.
Exercise 1. Prove that y =2 minimizes |y® — 2y — 5| among all integers.

So write y =2+ p. We obtain the equation for p:

PP +6p2+10p—1=0.

(1)

Assuming that p is small, we conclude 10 p — 1 ~0. So write p= 1i0 + g. Substituting

into the equation for p, we obtain the equation for ¢:

P+6.3¢%2+11.23¢+0.061=0.

(2)

From 11.23 ¢ + 0.061 ~ 0 we conclude ¢ = —0.0054 + r, which leads to r = —

0.00004852 + s, ...
Thus we obtained an infinite series representation of the solution:

y=2+0.1-0.0054 — 0.00004852 + ---

(3)

Remark. Note that, also there are formulas for roots of cubic polynomials, the

formula reads

y:?’\/\/_ _3\/\/_

(4)

and is much inferior to (3) if we would like to have a reasonably accurate numerical

value of the solution.

Example 2. Solve y=y(x) for y3+zy+y—23—2=0.

Solution. Newton first assumed z is small. This gives > + y — 2 ~ 0 and gives

y(z) =1+ p(z). The equation for p reads

pP+3p*+4p+ap+az—a3=0.

(5)

As obviously p(0) =0 we see that for z small, patx for some number ¢ and is thus

as small as .
Exercise 2. Why is this reasonable?
This means

4p+x%0:>p(x):—%+q(x).

(6)

Substituting this into the p-equation and picking the lowest order terms, we have

1
q(x) %axz +r(z), ...
Finally we represent the solution as an infinite series of functions

11, 131
y(z)=1 1% e Tt



o Solving differential equations (Power series method)

Example 3. Solve y' =1y, y(0)=1.

Solution. We write y(x) = ao+ a1 x + az 2% + --- and substitute into the equation to

obtain
a1+2arx+3a32’+ - =ap+arx+asz’+ -, ap=1. (8)
From this we conclude
1 1 1
aozl,alzl,agzi,agzg,...,an:m,... 9)
Thus the solution is
o0 xn
ya)=3" L (10)
n=0

Exercise 3. Solve y'=zy, y(0)=2.
e Limit of functions.

o Definition.
Let f.(z): [a, b] — R be a sequence of functions. We say f(x) = lim, o0 fn(z) if
and only if

Va € [a, b], lim fp(x)= f(x). (11)

n—oo
Note that once the arbitrary x € [a, b] is chosen, f,(z) is just a number for every n.

o Examples.

n . 1 z=1
Example 4. Let f,(x)=2a", then on [0, 1], lim,, oo fn(2) { 0 ze[0,1)
Example 5. Let fy(x)= Si%x. For every x € R, we have —in < Si%x < in and it
follows from Squeeze that lim,, % =0. Thus
lim 22T (12)
n—oo n

over RR.
Example 6. Let f,(z)=nz (1 —22)". We have lim,, . f(2) =0 on [0,1].

e Infinite series of functions.

o Definition.
Let up(): [a, b] —R. Then Y07 | up(x) is defined as lim, .00 Sp(x) where Sy (z) :=
ur(z) + -+ up(x).
o Examples.

n

Example 7. Y > =

n!

=e”.

sinnx

Example 8. Consider > 7 | —
In contrast to Example 7, we do not have an elementary function representation

sinnx .
ol is defined at
n=1 n2

of this infinite sum. However we still can prove that f(z):=3"
every x € R.
Let x € R be arbitrary. Then
co sinnz
so does > > | —5—.

sinnx

1 1
| <3 forallneN. As S — converges,




	Math 118 Winter 2015 Lecture 24 (Feb. 23, 2015)

