
Math 118 Winter 2015 Lecture 24 (Feb. 23, 2015)

� Please review the concepts of limit of sequences and convergence of in�nite series.

� Motivation

� Solving algebraic equations (Newton's method)

Example 1. Solve y3¡ 2 y¡ 5=0.

Solution. First we try integers. The best is y=2.

Exercise 1. Prove that y=2 minimizes jy3¡ 2 y¡ 5j among all integers.

So write y=2+ p. We obtain the equation for p:

p3+6 p2+ 10 p¡ 1=0: (1)

Assuming that p is small, we conclude 10 p¡ 1�0. So write p= 1

10+ q. Substituting
into the equation for p, we obtain the equation for q:

q3+ 6.3 q2+ 11.23 q+ 0.061=0: (2)

From 11.23 q + 0.061 � 0 we conclude q = ¡0.0054 + r, which leads to r = ¡
0.00004852+ s, ...

Thus we obtained an in�nite series representation of the solution:

y=2+ 0.1¡ 0.0054¡ 0.00004852+ ��� (3)

Remark. Note that, also there are formulas for roots of cubic polynomials, the
formula reads

y= 3 ��� ���
pp

¡ 3 ��� ���
pp

(4)

and is much inferior to (3) if we would like to have a reasonably accurate numerical
value of the solution.

Example 2. Solve y= y(x) for y3+x y+ y¡x3¡ 2=0.

Solution. Newton �rst assumed x is small. This gives y3 + y ¡ 2 � 0 and gives
y(x)= 1+ p(x). The equation for p reads

p3+3 p2+4 p+x p+x¡x3=0: (5)

As obviously p(0) = 0 we see that for x small, p� t x for some number t and is thus
as small as x.

Exercise 2. Why is this reasonable?

This means

4 p+x� 0=) p(x)=¡x
4
+ q(x): (6)

Substituting this into the p-equation and picking the lowest order terms, we have
q(x)� 1

64 x
2+ r(x), ...

Finally we represent the solution as an in�nite series of functions

y(x)= 1¡ 1
4
x+ 1

64
x2+ 131

512
x3+ ��� (7)



� Solving di�erential equations (Power series method)

Example 3. Solve y 0= y, y(0)= 1.

Solution. We write y(x) = a0+ a1 x+ a2 x2+ ��� and substitute into the equation to
obtain

a1+2a2x+3a3x2+ ���= a0+ a1x+ a2x
2+ ���; a0=1: (8)

From this we conclude

a0=1; a1=1; a2=
1
2
; a3=

1
6
; :::; an=

1
n!
; ::: (9)

Thus the solution is

y(x)=
X
n=0

1
xn

n!
: (10)

Exercise 3. Solve y 0=x y, y(0)= 2.

� Limit of functions.

� De�nition.
Let fn(x): [a; b] 7!R be a sequence of functions. We say f(x) = limn!1fn(x) if

and only if
8x2 [a; b]; lim

n!1
fn(x)= f(x): (11)

Note that once the arbitrary x2 [a; b] is chosen, fn(x) is just a number for every n.

� Examples.

Example 4. Let fn(x)=xn, then on [0; 1], limn!1fn(x)=
�
1 x=1
0 x2 [0; 1) .

Example 5. Let fn(x)=
sinnx

n
p . For every x2R, we have ¡ 1

n
p 6 sinnx

n
p 6 1

n
p and it

follows from Squeeze that limn!1
sinnx

n
p =0. Thus

lim
n!1

sinnx
n

p =0 (12)
over R.

Example 6. Let fn(x)=nx (1¡x2)n. We have limn!1fn(x)= 0 on [0; 1].

� In�nite series of functions.

� De�nition.
Let un(x): [a; b] 7!R. Then

P
n=1
1 un(x) is de�ned as limn!1Sn(x) where Sn(x) :=

u1(x)+ ���+un(x).
� Examples.

Example 7.
P

n=1
1 xn

n!
= ex.

Example 8. Consider
P

n=1
1 sinnx

n2
.

In contrast to Example 7, we do not have an elementary function representation
of this in�nite sum. However we still can prove that f(x) :=

P
n=1
1 sinnx

n2
is de�ned at

every x2R.
Let x 2R be arbitrary. Then

��� sinnx
n2

��� 6 1

n2
for all n 2N. As

P
n=1
1 1

n2
converges,

so does
P

n=1
1 sinnx

n2
.
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