MATH 118 WINTER 2015 LECTURE 14 (Jan. 28, 2015)
Integration by parts for definite integrals.

THEOREM 1. (INTEGRATION BY PARTS) If u,v are continuous on [a,b] an differentiable on
(a,b), and if u',v" are integrable on [a,b], then

b

b
/ (@) v'(@) dz = u(b) v(b) — u(a) v(a) — / (@) v(z) dz. (1)

a
Proof. Let F=wuwv. Then F’=wuv’'+ v/ v. Since u, v are continuouson [a, b], they are also
integrable on [a, b]. Together with integrability of u’,v” we conclude F’ is integrable on [a, b].
Application of the first version of FTC gives the desired result. O
Problem 1. Prove the integration by parts formula using definition of Riemann integral only.

NOTATION. It is often convenient to write u(b) v(b) —u(a) v(a) as uvl8.

Example 2. Calculate

2
/ xlnxde. (2)
1

2 1 /2
/ zlnxdxr = —/ In 2 dz?
1 2 /i
1 2
= —[m%nxﬁ—/ xdx]
2 1

3

Solution. We have

2
Exercise 1. Calculate / % (Inz)%dz.
1
Change of variables for definite integrals.

THEOREM 3. Let u be continuous on [a, b], differentiable on (a,b) and assume u’ is integrable
on |a,b]. If f is continuous on I:=u([a, b]), then

b u(b)
/ Flu()) /() di = / f(x) da. (4)
a u(a)

Remark 4. Recall that in the case u(b) < u(a), the integral is understood as

u(b) u(a)
[ t@ar==[" " ja)a. o)
u(a) u(b)

Proof. We notice that, if we define F(z) = fj(a) f(t)dt, then F’'(z) = f(z) and it follows
from FTC Version 1 that

u(b)
L f(w) dz = F(u(b)) — F(u(a)); (6)



On the other hand, if we set
G(t) == F(u(t)) (7)
then by Chain rule
C(1) = S (u(t)) = F(u(t)) /(1) = F(u(t)) /(1) 0

Note that the last equality is a result of FTC Version 2 and only holds because f is continuous
at every u(t).
Next we check that f(u(t)) «/(t) is integrable: f(x), u(t) continuous = f(u(t))
continuous = f(u(t)) integrable = f(u(t)) u/(t) integrable since u'(t) is integrable.
Finally applying FTC Version 1 to G we have

b
/ f(u(t)) w'(t) dt = G(b) — G(a) = F(u(b)) — F(u(a)). (9)

and the proof ends. Note that in this last step we need G to be continuous, which follows
from the continuity of f and of wu. O

Remark 5. Note that we don’t need u to be one-to-one!! In particular, it may happen that

u(la, b)) # [u(a), u(b)].

THEOREM 6. Let u(t): [a, bl — R be continuous on [a,b], differentiable on (a,b) and assume
u’ is continuous on [a, b]. Let f(x) be integrable on I :=u([a, b]). Further assume that u is
strictly increasing or decreasing. Then

/ flu dt—/u:;)) f(z)da. (10)

Proof. Wlog assume wu is strictly increasing. Then u([a, b]) = [u(a), u(b)]. Further wlog
assume that a =0,b=1. Let P,,= {0, %, e 1}. Denote by @), the corresponding partition

of [u(0), u(1)]: {u(O),u(%),...,u(l)}.

Exercise 2. Why is @,, a partition?

MV];?note by In:=>"p_; flu(cn,k)) (u(%) —u(k—;l)) where ¢, 1, € (%1 %) comes from

denn=n(o(£)-o(£21)) an

. As f is integrable on [u(0),u(1)] and w is continuous on [0, 1], we have

u(b)
lim In:/ () da (12)
n—00 u(a)

Exercise 3. Prove (12).

By our choices of ¢, i there holds

In:Zf uen)len) (£ E21), (13)

1. In higher dimensions, we do need the change of variable function to be one-to-one. To fully understand this issue, check
out “degree theory”.




Now we have
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Exercise 4. Explain (14) and finish the proof. U

b
Remark 7. Checking (13) we see that lim,, oI, :/ f(u(t)) u'(t) dt and the proof ends

a
as long as f(u(t)) u/(t) is integrable on [a, b]. However it is not clear to me yet whether
integrability of f and differentiability of u (without continuity of u’) could guarantee this.
Also it may happen that the monotonicity assumption could be dropped.

Taylor expansion with integral remainder.

Example 8. Taylor expansion with integral remainder.
We can obtain Taylor expansion using integration by parts.

f@ = fa) = [ ra
_ /f d(z 1)
= —fW =0+ [ @=0dro
= f@a=a+ [ @0 o
- f'(a) x—a——/ F7(8) d(z - 1)?

= fl(a)(z—a)+35 f”(a) (z—a)’+ %/ (z—1)% f(t) dt. (15)
Exercise 5. Prove
fa)= >0 LN oy [T LD ey (16)

The remainder / % FH(#) dt is called “integral form of the remainder” for the

a
Taylor expansion of f. One can show that if f("+1)(t) is continuous, then there is ¢ € (a, x)
such that

T (g (n+1) c
/ ( nt) f(n—i—l)( t)dt = f(n:_ 1()!) (:l:—a)"'H (17)



which is exactly the Lagrange remainder.
Exercise 6. Prove (17).
The disadvantage of the Lagrange remainder is that
1. We have no knowledge of where ¢ exactly is;

2. The dependence of ¢ on z may be rough. For example, we can differentiate the integral
remainder but not the Lagrange remainder (due to ¢(x) may not be differentiable).

On the other hand, there is no problem calculating

d%[[c Mf("“)(t) dt]. (18)

n!

n!

Exercise 7. Calculate %[]; L= O p(nt1) 4) dt].

Therefore in analysis it is usually advantageous to the integral form for the remainder.
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