
Math 118 Winter 2015 Lecture 13 (Jan. 26, 2015)

Note. All the functions below should be understood as complex functions of complex variables.
However most of the main ideas could be roughly understood with this fact ignored.

Note. This lecture is based mainly on the following references.

� Joseph Fels Ritt, Integration in Finite Terms: Liouville's Theory of Elementary Methods , Columbia University
Press, 1948.

� Elena Anne Marchisotto & Gholam-Ali Zakeri, An Invitation to Integration in Finite Terms , The College
Mathematics Journal 25(4) September 1994 295 � 308.

� Chebyshev's Theorem.

� Recall:

Theorem 1. (Chebyshev 1853) Let r; s2Q. Then
Z
xr (1¡x)s dx is elementary if

and only if one or more of the following holds: r 2Z; s2Z; r+ s2Z.

� We have proved the �if� part in our last lecture.

� The �only if� part.

¡ We won't be able to present the full proof here, instead we just try to present
the main ideas to make the theorem sound reasonable.

We prove by contradiction. Assume the integral is elementary.

¡ Abel's theorem.

� Algebraic function: A function u of x is algebraic if it is de�ned by an
irreducible relation

an(x)un+ ���+ a1(x)u+ a0(x)= 0 (1)

where each ai(x) is a polynomial in x.

Exercise 1. Show that the function y(x) := xr (1 ¡ x)s is algebraic when r;
s2Q.

Exercise 2. Prove: All rational functions are algebraic.

� Weak Liouville theorem.

Theorem 2. (Liouville 1833) Let f(x) be algebraic and assumeZ
f(x) dx is elementary. ThenZ

f(x) dx=u0(x)+ c1 lnu1(x)+ ���+ cr lnur(x)+C (2)

where u0(x); :::; ur(x) are algebraic.

The rigorous proof of this is somewhat tedious. On the other
hand, it is easy to convince oneself of the conclusion: If there are
exponentials or nonlinear involvement of logarithms, then they will
survive di�erentiation and will appear in f(x).1

1. Of course the fact that exponentials and logarithms are not algebraic function still needs to be proved.



� Abel's theorem.2

Theorem 3. (Abel 1820s?) The functions u0; :::; ur in ( 2) can be
taken to be bi-rational in x; f(x).

Exercise 3. Why is this an improvement on Theorem 2?

There are two ways to prove this, through complex analysis
or through algebra. We do not present them here.3 On the other
hand, Theorem 3 is intuitively correct as roots also �almost survives�
di�erentiation, therefore any non-rational algebraic functions will leave
its mark in the original integrand f(x).

¡ When the integral is elementary but not algebraic.
In this case we have at least one ci=/ 0. Taking derivative we obtain ui

0

ui
. Let

a2C be such that ui(a)= 0. Then if we write everything in x¡ a, intuitively
there will be a term b

x¡ a , as we can easily check with say u=x2; u=x¡1, etc.

We say the �residue� of ui0/ui is nonzero at a.
On the other hand, there is no such term in u0

0 , as can be illustruated
through examples like x2 and x¡1. Therefore the residue of u00 at any a is zero.

Proposition 4. If f(x) is an algebraic function whose integral is elementary
but not algebraic, then there is a on a Riemann surface of f at which f has
residue dintinct from zero.

¡ Residue analysis for xr (1¡x)s.
When r 2/ Z, the residue at 0 is zero; When s2/ Z, the residue at 1 is zero.

When r + s 2/ Z, the residue at 1 is zero. The residue at any other point is
obviously zero as xr (1 ¡ x)s enjoys a Taylor expansion there and no Taylor

expansion contains terms like b

x¡ a .

Therefore if
Z
xr (1 ¡ x)s dx is elementary, it must be algebraic, and by

Theorem 3 it must be a rational function of x and y(x) := xr (1¡x)s.
¡ Completing the proof of Chebyshev's theorem.

2. According to Ritt, Abel actually proved this theorem about ten years before Liouville's result.

3. The complex analysis proof does not make sense in real variables. On the other hand, the algebra proof can be sketched
as follows. We consider the case where only u0; u1 presents. Rename them u; v. As u; v are algebraic they satisfy

amum+ ���+ a0=0; bn v
n+ ���+ b0=0: (3)

Let the roots be u1 = u; :::; um; v1 = v; :::; vn. Now let t: =h u + k v for some appropriate h; k 2 C. De�ne F (z) :=Q
i; j (z¡ (h ui+k vj)). Note that the coe�cients of F are symmetric combinations of ui;vj and thus are rational (To understand

why see e.g. pp. 39 - 40 of Emil Artin, Galois Theory, Dover 1998). Further de�ne Gij; H by F = [z ¡ (h ui+ k vj)]Gij(z),
H(z)=

P
i; j Gijui. Then we have

H(t) =F 0(t)u=)u is rational in x; t=)
Z
f =u+ c lnv=U(t; x)+ c lnV (t; x) (4)

where U ; V are rationa.
Now t, a linear combination of u; v, is also algebraic over the �eld F(x; f) generated by rational functions of x together

with f . Let �l tl+ ���+�0=0 (assume the LHS polynomial is irreducible in F(x; f)) and let t1= t; :::; tl be the roots. From this
it is clear that t0 is rational in x; t and consequently f(x) is rational in t (you need a bit knowledge of partial derivatives here)
and f =

d

dx
[U(t; x)+ c lnV (t; x)] becomes a equation with coe�cients in F(x; f) and thus must have as a factor �l tl+ ���+�0.

Consequently
Z
f =U(ti; x) + c lnV (ti; x) for every i=1; 2; :::; l. Add them up and use symmetry, we reach our conclusion.



We have seen that if
Z
xr (1 ¡ x)s dx is elementary, then there is a

(bi)rational function R(x; y) such thatZ
xr (1¡x)s=R(x; xr (1¡x)s): (5)

Now assume r= p

m
; s= q

m
where p; q2Z;m2N andm is the smallest possible.

Clearly we have
ym(x)=xp (1¡x)q: (6)

Consequently, we can write

u(x)= P (x; y)
Q(x; y)

(7)

where the highest power of y in P ; Q are no more than m¡1. Furthermore we
can �nd a R(x; y) that is a polynomial in y with coe�cients rational functions
of x, such that R(x; y)Q(x; y)= 1.

Example 5. We convince ourselves through an example for numbers. Let x
be de�ned as x2= 2. We claim there is a linear polynomial a x+ b such that
(ax+ b) (x+1)=1. Expanding the left hand side we have

ax2+(a+ b)x+ b=1: (8)

Recalling x2=2 we reach

(a+ b)x+ b=1¡ 2 a (9)

and a; b can be determined through a+ b=0; b=1¡ 2 a.

Therefore we can assume

u(x)=A0(x)+A1(x) y+ ���+Am¡1(x) ym¡1 (10)

where each Ai(x) is rational.

Exercise 4. Prove that

u0(x)=B0(x)+B1(x) y+ ���+Bm¡1(x) ym¡1 (11)

where each Bi(x) is rational. (Hint:4 )

Thus we arrive at

y=B0(x)+B1(x) y+ ���+Bm¡1(x) ym¡1 (12)

(12) must be an identity as otherwise y satis�es an equation of degree less than
m which is not possible. Therefore we have

u(x)=A(x) y(x): (13)

Now we initiate the �nal step. Let A(x) = P (x)

Q(x)
. Clearly the factors of Q can

only be 0, 1. But then u(x) is �more singular� at 0;1 than its derivative y which
is not possible. Therefore A(x) is a polynomial. But then clearly we should
have A linear as otherwise u0(x)= y(x) will be �more singular� at1 than y(x),
a nonsensical statement.

4. y 0

y
=

1

mym
(ym)0.



Thus we have to have

[(a+ b x)xr (1¡x)s]0=xr (1¡x)s (14)

which leads to

b x (1¡x)+ r (a+ b x) (1¡x)+ s (a+ b x)x=x (1¡x) (15)

and consequently

xj (a+ b x); (1¡x)j (a+ b x) (16)

from which it follows a= b=0. Contradiction.

� Liouville's Theorem and its applications.

� Strong Liouville theorem.

Theorem 6. (Liouville 1835)

a) Let F (x; y1; :::; ym) be algebraic and assume each yi
0(x) is an algebraic function

of x; y1; :::; ym. Then
Z
F (x; y1(x); :::; ym(x)) dx is elementary if and only ifZ

F (x; y1(x); :::; ym(x)) dx=u0(x)+
X
j=1

n

cj lnuj(x)+C (17)

where each u0; :::; un are algebraic functions of x; y1; :::; ym.

b) Let F (x; y1; :::; ym) be rational and each yi
0(x) is rational in x; y1; :::; ym. Then

the u0; :::; un in ( 17) are rational in x; y1; :::; ym.

Example 7. Let F be rational. Then F (x; ex; lnx; ee
x
; ln(lnx); sinx; cosx; cos(ex))

satis�es the conditions in a) but not those in b).

Corollary 8. Let g(x); h(x) be rational. Then
Z
h(x) eg(x) dx is elementary if and

only if there is a rational function R(x) such thatZ
h(x) eg(x)dx=R(x) eg(x)+C: (18)

Proof. We sketch it here.5

�

5. Denote y := eg(x) and u the integral. Then we have

u=U0(x; y)+
X

ci lnUi(x; y) (19)

where U0; ::: are rational. Taking derivative we have (you need to spend a couple of minutes/hours getting to know multi-
variable chain rule here)

y h(x) =
@U0
@y

y g0+
@U0
@x

+
X 1

Ui

�
@Ui
@y

y g0+
@Ui
@x

�
(20)

As y is not algebraic, (20) must be an identity in y which means we can safely replace every y by t y for t 2R. Integrate
and then di�erentiate w.r.t. t and then set t=1, we conclude u=U0(x; y). Apply the same trick again we reach

y
@U0
@y

=U0+C (21)

for some constant C. This is also an identity so we can treat y as a variable and di�erentiate w.r.t. y to obtain y
@2U0
@y2

=0

which means U0 must be linear in y and the conclusion follows.



Example 9. Consider
Z
e¡x

2
dx. By Corollary 8 we see that if it is elementary, then

there is a rational function R(x) such that�
R(x) e¡x

2�0= e¡x
2
: (22)

This gives

R0(x)¡ 2xR(x)= 1: (23)

Now let R(x)= P (x)

Q(x)
where P ; Q are polynomials. Then we have

P 0(x)Q(x)¡Q0(x)P (x)¡ 2xP (x)Q(x)=Q2(x) (24)

which gives

Q0(x)P (x)=Q(x) [P 0(x)¡ 2xP (x)¡Q(x)]: (25)

Let (x ¡ a)kj Q but (x ¡ a)k+1jQ. Then we have (x ¡ a)kj RHS but (x ¡ a)kjLHS.
Thus k=0. Wlog Q=1. Then

P 0(x)¡ 2xP (x)= 1 (26)

for some polynomial P (x).

Exercise 5. Prove that there is no polynomial P (x) satisfying (26).

Thus
Z
e¡x

2
dx is not elementary.

Exercise 6. Prove that the following integrals are not elementary. Note that Corollary 8 may
not directly apply to one or more of the following.Z

x4 ex
2
;

Z
ex

x
dx;

Z
ex

3
dx;

Z
x

p
ex dx;

Z
dx

ln x
: (27)
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