MATH 118 WINTER 2015 HOMEWORK 3 SOLUTIONS

Due Thursday Jan. 29 3PM in Assignment Box

QUESTION 1. (15 PTS) Calculate the following indefinite integrals through partial fractions. Please provide enough details.

a) (2 PTS)
$$\int \frac{2x}{x^2 + 2x + 2} dx;$$

b) (2 PTS)
$$\int \frac{x^2+2}{(x+1)^3(x-2)} dx;$$

c) (2 PTS)
$$\int \frac{2 x \, dx}{(x^2+1)(x-1)}$$
.

d) (3 PTS)
$$\int \frac{x^4 + 4x^3 + 11x^2 + 12x + 8}{(x^2 + 2x + 2)^2(x + 1)} dx.$$

e) (3 PTS)
$$\int \frac{x^4}{x^4 + x^3 - x^2 + x - 2} dx$$
.

$$f) (3 \text{ PTS}) \int \frac{\mathrm{d}x}{x^6 - 1}.$$

Solution.

a) We have

$$\int \frac{2x \, dx}{x^2 + 2x + 2} = \int \frac{(2x+2) \, dx}{x^2 + 2x + 2} - 2 \int \frac{dx}{x^2 + 2x + 2}$$
 (1)

$$= \int \frac{d(x^2 + 2x + 2)}{x^2 + 2x + 2} - 2 \int \frac{d(x+1)}{(x+1)^2 + 1}$$
 (2)

$$= \ln|x^2 + 2x + 2| - 2\arctan(x+1) + C.$$
 (3)

b) We write

$$\frac{x^2+2}{(x+1)^3(x-2)} = \frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3} + \frac{D}{x-2}.$$
 (4)

Multiply both sides by x-2 and set x=2 we have $D=\frac{2}{9}$. Multiply both sides by $(x+1)^3$ and set x=-1 we have C=-1. To decide A,B, we multiply both sides by $(x+1)^3(x-2)$:

$$x^{2} + 2 = A(x+1)^{2}(x-2) + B(x+1)(x-2) + C(x-2) + D(x+1)^{3}.$$
 (5)

Equating the coefficients for x^3 we have $0 = A + D \Longrightarrow A = -\frac{2}{9}$. Finally equating the constant term we have $2 = -2A - 2B - 2C + D \Longrightarrow B = \frac{1}{3}$.

Thus we have

$$\int \frac{x^2 + 2}{(x+1)^3 (x-2)} dx = \int \left[-\frac{2}{9} \frac{1}{x+1} + \frac{1}{3(x+1)^2} - \frac{1}{(x+1)^3} + \frac{2}{9(x-2)} \right] dx$$
$$= -\frac{2x-1}{6(x+1)^2} + \frac{2}{9} \ln \left| \frac{x-2}{x+1} \right| + C. \tag{6}$$

c) We write

$$\frac{2x}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1}.$$
 (7)

Multiply both sides by x-1 and set x=1 we have C=1. Set x=0 we have $0=B-C\Longrightarrow B=1$. Finally comparing the x^2 term in

$$2x = (Ax + B)(x - 1) + C(x^{2} + 1)$$
(8)

we obtain $0 = A + C \Longrightarrow A = -1$.

Thus we have

$$\int \frac{2 x \, dx}{(x^2 + 1)(x - 1)} = \int \frac{-x}{x^2 + 1} \, dx + \int \frac{dx}{x^2 + 1} + \int \frac{dx}{x - 1}$$
$$= -\frac{1}{2} \ln|x^2 + 1| + \arctan x + \ln|x - 1| + C. \tag{9}$$

d) We write

$$\frac{x^4 + 4x^3 + 11x^2 + 12x + 8}{(x^2 + 2x + 2)^2(x + 1)} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{(x^2 + 2x + 2)^2} + \frac{E}{x + 1}.$$
 (10)

Multiply both sides by x+1 and set x=-1 we have E=4. To determine A-D, we multiply both sides by $(x^2+2x+2)^2(x+1)$ to obtain

$$x^4 + 4x^3 + 11x^2 + 12x + 8 = (Ax + B)(x^2 + 2x + 2)(x + 1) + (Cx + D)(x + 1) + 4(x^2 + 2x + 2)^2.$$
 (11)

Comparing the x^4 terms we have $1 = A + 4 \Longrightarrow A = -3$. Comparing the 1, x, x^3 terms¹ we obtain the following system for B, C, D:

$$8 = 2B + D + 16; (12)$$

$$12 = -6 + 4B + C + D + 32; (13)$$

$$4 = -9 + B + 16. (14)$$

From (14) we obtain B = -3. Then using (12) we have D = -2. Finally substituting B = -3, D = -2 into (13) we obtain C = 0.

Thus we have

$$\frac{x^4 + 4x^3 + 11x^2 + 12x + 8}{(x^2 + 2x + 2)^2(x + 1)} = -\frac{3(x + 1)}{x^2 + 2x + 2} - \frac{2}{(x^2 + 2x + 2)^2} + \frac{4}{x + 1}.$$
 (15)

We evaluate them one by one.

$$-3\int \frac{x+1}{x^2+2x+2} dx = -\frac{3}{2}\int \frac{2x+2}{x^2+2x+2} dx$$
 (16)

$$= -\frac{3}{2} \int \frac{\mathrm{d}(x^2 + 2x + 2)}{x^2 + 2x + 2} \tag{17}$$

$$= -\frac{3}{2}\ln(x^2 + 2x + 2) + C. \tag{18}$$

For the second integral we use the following trick:

$$\int \frac{\mathrm{d}x}{x^2 + 2x + 2} = \frac{x}{x^2 + 2x + 2} - \int x \,\mathrm{d}\left(\frac{1}{x^2 + 2x + 2}\right) \tag{19}$$

$$= \frac{x}{x^2 + 2x + 2} + \int \frac{2x^2 + 2x}{(x^2 + 2x + 2)^2} dx$$
 (20)

$$= \frac{x}{x^2 + 2x + 2} + 2 \int \frac{\mathrm{d}x}{x^2 + 2x + 2} - \int \frac{2x + 4}{(x^2 + 2x + 2)^2} \,\mathrm{d}x \tag{21}$$

$$= \frac{x}{x^2 + 2x + 2} + 2\arctan(x+1) - \int \frac{2x+2}{(x^2 + 2x + 2)^2} dx$$

$$-2\int \frac{\mathrm{d}x}{(x^2+2x+2)^2}$$
 (22)

$$= \frac{x+1}{x^2+2x+2} + 2\arctan(x+1) - 2\int \frac{\mathrm{d}x}{(x^2+2x+2)^2}.$$
 (23)

^{1.} Note that we choose x^3 so that C, D would not appear in this equation.

Thus we have

$$\int \frac{\mathrm{d}x}{(x^2 + 2x + 2)^2} = \frac{1}{2} \left[\frac{x+1}{x^2 + 2x + 2} + \arctan(x+1) \right] + C. \tag{24}$$

Now finally we can calculate

$$\int \frac{x^4 + 4x^3 + 11x^2 + 12x + 8}{(x^2 + 2x + 2)^2(x + 1)} dx = -\frac{3}{2} \ln(x^2 + 2x + 2) + 4 \ln|x + 1| -\frac{x + 1}{x^2 + 2x + 2} - \arctan(x + 1) + C.$$
 (25)

e) First we notice that deg $x^4 = \deg(x^4 + x^3 - x^2 + x - 2)$. Therefore we have to perform polynomial division to obtain

$$x^{4} = 1 \cdot (x^{4} + x^{3} - x^{2} + x - 2) + (-x^{3} + x^{2} - x + 2). \tag{26}$$

Therefore

$$\frac{x^4}{x^4 + x^3 - x^2 + x - 2} = 1 + \frac{-x^3 + x^2 - x + 2}{x^4 + x^3 - x^2 + x - 2}.$$
 (27)

Next we factorize the denominator. We see that possible rational roots are $\pm 1, \pm 2$, and we easily check that 1 is a root. Thus we factorize:

$$x^{4} + x^{3} - x^{2} + x - 2 = (x - 1)(x^{3} + 2x^{2} + x + 2).$$
(28)

Now possible roots for $x^3 + 2x^2 + x + 2$ are still $\pm 1, \pm 2$. This time we see that -2 is a root and finally we obtain

$$x^{4} + x^{3} - x^{2} + x - 2 = (x - 1)(x + 2)(x^{2} + 1)$$
(29)

which cannot be further factorized.

Now we write

$$\frac{-x^3 + x^2 - x + 2}{(x - 1)(x + 2)(x^2 + 1)} = \frac{A}{x - 1} + \frac{B}{x + 2} + \frac{Cx + D}{x^2 + 1}.$$
 (30)

Multiply both sides by x-1 and set x=1 we obtain $A=\frac{1}{6}$; Multiply both sides by x+2 and set x=-2 we obtain $B=-\frac{16}{15}$; Set x=0 we have $-1=-A+\frac{B}{2}+D\Longrightarrow D=-\frac{9}{30}$. Finally multiply both sides by (x-1) (x+2) (x^2+1) and equate the x^3 term we have $-1=A+B+C\Longrightarrow C=-\frac{1}{10}$.

Finally we have

$$\int \frac{x^4}{x^4 + x^3 - x^2 + x - 2} dx = x + \int \left[\frac{1/6}{x - 1} + \frac{-16/15}{x + 2} + \frac{-\frac{1}{10}x}{x^2 + 1} + \frac{-9/30}{x^2 + 1} \right] dx$$

$$= x + \frac{1}{6} \ln|x - 1| - \frac{16}{15} \ln|x + 2|$$

$$-\frac{1}{20} \ln(x^2 + 1) - \frac{9}{30} \arctan x + C.$$
(32)

f) We factorize

$$x^{6} - 1 = (x - 1)(x + 1)(x^{4} + x^{2} + 1)$$

$$(33)$$

$$= (x-1)(x+1)(x^2+x+1)(x^2-x+1). (34)$$

Now write

$$\frac{1}{(x-1)(x+1)(x^2+x+1)(x^2-x+1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+x+1} + \frac{Ex+F}{x^2-x+1}.$$
 (35)

We easily determine $A = \frac{1}{6}$, $B = -\frac{1}{6}$. To determine C - D we write

$$1 = A(x+1)(x^{2}+x+1)(x^{2}-x+1) +B(x-1)(x^{2}+x+1)(x^{2}-x+1) +(Cx+D)(x^{2}-1)(x^{2}-x+1) +(Ex+F)(x^{2}-1)(x^{2}+x+1) = \frac{1}{3}(x^{4}+x^{2}+1) +[(C+E)x+(D+F)](x^{4}-1) +[(E-C)x+(F-D)](x^{3}-x) = (C+E)x^{5}+(\frac{1}{3}+(D+F)+(E-C))x^{4} +(F-D)x^{3}+(\frac{1}{3}-(E-C))x^{2} +(-(C+E)-(F-D))x+(\frac{1}{3}+(D+F)).$$
 (38)

Now comparing the coefficients for $1, x^2, x^3, x^5$ we obtain

$$\frac{1}{3} - (D+F) = 1; (39)$$

$$\frac{1}{3} - (D+F) = 1;$$

$$\frac{1}{3} - (E-C) = 0;$$
(39)

$$F - D = 0; (41)$$

$$C + E = 0. (42)$$

We easily solve $D = F = -\frac{1}{3}$; $E = \frac{1}{6}$, $C = -\frac{1}{6}$. So we have the partial fraction resolution:

$$\frac{1}{x^6 - 1} = \frac{1}{6} \left[\frac{1}{x - 1} - \frac{1}{x + 1} - \frac{x + 2}{x^2 + x + 1} + \frac{x - 2}{x^2 - x + 1} \right] \tag{43}$$

We have

$$\int \frac{x+2}{x^2+x+1} dx \stackrel{t=x+1/2}{=} \int \frac{t+3/2}{t^2+3/4} dt$$

$$\stackrel{u=2t/\sqrt{3}}{=} \frac{4}{3} \int \frac{\frac{3}{4}u + \frac{3\sqrt{3}}{4}}{u^2+1} du$$

$$= \frac{1}{2} \ln(u^2+1) + \sqrt{3} \arctan u + C$$

$$= \frac{1}{2} \ln(x^2+x+1) + \sqrt{3} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + C. \tag{44}$$

Similarly we have

$$\int \frac{x-2}{x^2-x+1} \, \mathrm{d}x = \frac{1}{2} \ln(x^2-x+1) - \sqrt{3} \arctan\left(\frac{2x-1}{\sqrt{3}}\right) + C. \tag{45}$$

Summarizing, we have

$$\int \frac{\mathrm{d}x}{x^6 - 1} = \frac{1}{6} \ln|-1| - \frac{1}{6} \ln|x + 1|
- \frac{1}{6} \left[\frac{1}{2} \ln(x^2 + x + 1) + \sqrt{3} \arctan\left(\frac{2x + 1}{\sqrt{3}}\right) \right]
+ \frac{1}{6} \left[\frac{1}{2} \ln(x^2 - x + 1) - \sqrt{3} \arctan\left(\frac{2x - 1}{\sqrt{3}}\right) \right] + C.$$
(46)

QUESTION 2. (5 PTS) Let P, Q be polynomials with $\deg(P) < \deg(Q)$. Further assume that $Q(x) = (x - a_1) \cdots (x - a_n)$ for some $a_1, \ldots, a_n \in \mathbb{R}$ with $\forall i \neq j, a_i \neq a_j$. Prove

$$\int \frac{P(x)}{Q(x)} dx = \sum_{k=1}^{n} A_k \ln|x - a_k| + C$$

$$\tag{47}$$

where $A_k = \frac{P(a_k)}{Q'(a_k)}$.

Proof. First we notice that

$$Q'(x) = (x - a_2) \cdots (x - a_n) + (x - a_1) (x - a_3) \cdots (x - a_n) + \cdots + (x - a_1) \cdots (x - a_{n-1}). \tag{48}$$

Thus for every $k \in \{1, 2, ..., n\}$, we have

$$\frac{Q(x)}{x - a_k}|_{x = a_k} = Q'(a_k). \tag{49}$$

Now we write

$$\frac{P(x)}{Q(x)} = \frac{A_1}{x - a_1} + \dots + \frac{A_n}{x - a_n}.$$
 (50)

Multiply both sides by $x - a_k$ and then set $x = a_k$, we have $A_k = \frac{P(a_k)}{Q'(a_k)}$ as desired.

Remark. Alternatively, we can obtain A_k through L'Hospital:

$$A_k = \lim_{x \to a_k} \frac{(x - a_k) P(x)}{Q(x)} = \lim_{x \to a_k} \frac{P(x) + (x - a_k) P'(x)}{Q'(x)} = \frac{P(a_k)}{Q'(a_k)}.$$
 (51)

Note that from (48) we see that $Q'(a_k) \neq 0$, and as Q' is a polynomial, $\lim_{x \to a_k} Q'(x) = Q'(a_k)$.