
Math 118 Winter 2015 Lecture 11 (Jan. 22, 2015)

� We have seen that rational functions P (x)

Q(x)
can in theory1 always be integrated. Now we show

that another large class of functions also enjoys this property.

� Birational functions of cosx and sinx.

� A polynomial of two variables is a sum of �nitely many terms of the form a xk yl where
a2R; k; l2N[f0g, and x; y are the two variables.

� A birational function (or simply a rational function of x; y) is a function of the form
P (x; y)

Q(x; y)
where P ; Q are both polynomials of x; y.

� We claim that Z
P (cosx; sinx)
Q(cosx; sinx)

dx (1)

can always be reduced, through a change of variable, to the integration of a rational
function of a single variable, and therefore such integrals can in theory always be
calculated.

� Examples.

¡
Z

tanxdx. Here P (x; y)= y; Q(x; y)=x.

¡
Z

cosnxdx. Here P (x; y)=xn; Q(x; y)= 1.

¡
Z

1
sinnx

dx. Here P (x; y)= 1; Q(x; y)= yn.

¡
Z

cosnx sinmx dx. Here P (x; y)=xn ym, Q(x; y)= 1.

� Integration of P (cosx; sinx)
Q(cosx; sinx) through the universal change of variable.

� The universal change of variable is t= tan
¡ x
2

�
. We notice that

cosx = cos2
�
x
2

�
¡ sin2

�
x
2

�
= 1¡ t2
1+ t2

; (2)

sinx = 2 sinx
2
cos

x
2
= 2 t
1+ t2

; (3)

dx = d(2 arctanu)= 2
1+ t2

: (4)

Thus under this change of variable we haveZ
P (cosx; sinx)
Q(cosx; sinx)

dx=
Z
R(t) dt (5)

where

R(x)=
P
�
1¡ t2

1+ t2
;

2 t

1+ t2

�
Q
�
1¡ t2

1+ t2
;

2 t

1+ t2

� 2
1+ t2

(6)

1. and in practice



is rational.

Problem 1. Prove that R(x) is rational.

� Examples.

Example 1. Calculate
Z

dx
cosx+ sinx

.

Solution. We apply the change of variable t= tan x

2
. Then we haveZ

dx
cosx+ sinx

=
Z

1
1¡ t2

1+ t2
+ 2 t

1+ t2

2
1+ t2

dt

=
Z

2
1+2 t¡ t2 dt: (7)

We solve this integral using partial fractions. Solve 1+2 t¡ t2=0 gives t1;2=1� 2
p

.
Therefore 1+2 t¡ t2=

¡
1+ 2

p
¡ t

�¡
1¡ 2

p
¡ t

�
and we write

2
1+2 t¡ t2 =

A

t¡
¡
1+ 2

p �+ B

t¡
¡
1¡ 2

p � (8)

and determine

A=¡ 2
p

2
; B= 2

p

2
: (9)

Therefore Z
2 dt

1+2 t¡ t2 = 2
p

2

Z "
1

t¡
¡
1¡ 2

p �¡ 1
t¡

¡
1+ 2

p � #dt
= 2
p

2
ln

����� t¡
¡
1¡ 2

p �
t¡

¡
1+ 2

p ������+C: (10)

Substituting back u= tan
¡ x
2

�
we haveZ

dx
cosx+ sinx

= 2
p

2
ln

����� tan
¡ x
2

�
¡
¡
1¡ 2

p �
tan

¡ x
2

�
¡
¡
1+ 2

p ������+C: (11)

Exercise 1. Calculate
Z

dx

cos x¡ sin x
.

Exercise 2. Calculate
Z

dx
cos2x+ sin x

.

Example 2. Calculate
Z

dx

1+2 cosx .

Solution.We have P (x; y)=1; Q(x; y)=1+2 y. Thus the substitution t= tanx
2
givesZ

dx
1+2 cosx

=
Z

1

1+2 1¡ t
2

1+ t2

2
1+ t2

dt=
Z

2
3¡ t2 dt: (12)

Apply the method of partial fractions, we haveZ
2

3¡ t2 dt=
1
3

p
�Z

dt
3

p
¡ t

+
Z

dt
3

p
+ t

�
= 1

3
p ln

����� 3
p

+ t

3
p
¡ t

�����+C: (13)



Substituting back t= tanx
2
, we haveZ
dx

1+2 cosx
= 1

3
p ln

����� 3
p

+ tanx
2

3
p
¡ tanx

2

�����+C: (14)

Exercise 3. Calculate
Z

dx
1+2 sin x+3 cos x

.

� Special cases.

� The universal change of variable always works, but may not be the most e�cient
approach.

Example 3. Calculate
Z

sin2 x
sin2x+ cosx

dx.

Solution. Let t= cosx, then we haveZ
sin 2x

sin2x+ cosx
dx = ¡2

Z
t dt

1+ t¡ t2

= 2
Z

t�
t¡ 1+ 5

p

2

��
t¡ 1¡ 5

p

2

� dt
=

Z 24 1+ 1

5
p

t¡ 1+ 5
p

2

+
1¡ 1

5
p

t¡ 1¡ 5
p

2

35dt
=

�
1+ 1

5
p

�
ln

�����t¡ 1+ 5
p

2

�����+
�
1¡ 1

5
p

�
ln

�����t¡ 1¡ 5
p

2

�����+C

=
�
1 + 1

5
p

�
ln

�����cos x ¡ 1+ 5
p

2

����� +
�
1 ¡ 1

5
p

�
ln

�����cos x ¡
1¡ 5

p

2

�����+C

= lnj1+ cosx¡ cos2xj+ 1
5

p ln

����� 5
p

+1¡ 2 cosx
5

p
¡ 1+2 cos t

�����+C: (15)

Remark 4. To compare, let's try the universal change of variable t = tan
¡ x
2

�
. We

have Z
sin 2x

sin2x+ cosx
dx =

Z
2 sinx cosx
sin2x+ cosx

dx

=
Z 2 2 t

1+ t2
1¡ t2

1+ t2�
2 t

1+ t2

�
2
+ 1¡ t2

1+ t2

2
1+ t2

dt

=
Z

4 t (1¡ t2)
4 t2+1¡ t4

2
1+ t2

dt: (16)

We see that in this approach we have to deal with a much more complicated rational
function.

� The following are the most important special cases.



Proposition 5. (Special Cases) Let R(x; y) be birational and such that

a) R(¡x; y)=¡R(x; y), or
b) R(x;¡y)=¡R(x; y), or
c) R(¡x;¡y)=R(x; y).

Then
R
R(sin x; cos x) dx can be integrated through t = sin x, t = cos x, t = tan x,

respectively.

Proof. LetR(x; y)= P (x; y)

Q(x; y)
whereP ;Q are polynomials that share no common factor.

a) In this case we have

P (x; y)=R(x; y)Q(x; y) (17)

and therefore

P (¡x; y)=¡R(x; y)Q(¡x; y): (18)

Putting the two together we have

P (x; y)¡P (¡x; y)=R(x; y) [Q(x; y)+Q(¡x; y)]: (19)

As P ; Q are polynomials, they can be written as

P (x; y)= an(y)xn+ ���+ a0(y); Q(x; y)= bm(y)xm+ ���+ b0(y): (20)

Now it is easy to check that

P (x; y)¡P (¡x; y)=xP1(x2; y); Q(x; y)+Q(¡x; y)=Q1(x2; y) (21)

where P1; Q1 are polynomials.

Exercise 4. Finish the proof.

b) This part is left as exercise.

Exercise 5. Prove this part.

c) In this case we have P (x; y)=R(x; y) Q(x; y) and P (¡x;¡y)=R(x; y) Q(¡x;
¡y). This gives

R(x; y)= P (x; y)+P (¡x;¡y)
Q(x; y)+Q(¡x;¡y) : (22)

As P (x; y); Q(x; y) consists of terms of the form xk yl, we see that all the terms
with k+ l odd are cancelled in both numerator and denominator. Now notice
that when k+ l is even, there always holds

xk yl=
�
y
x

�
l
xk+l=

�
y
x

�
l
(x2)(k+l)/2: (23)

Thus we have P (x; y) + P (¡x; ¡y) = P1
¡ y
x
; x2

�
and Q(x; y) + Q(¡x;

¡y)=Q1

¡ y
x
; x2

�
where P1; Q1 are polynomials.

Exercise 6. Finish the proof. �

� More examples of the special cases.

Example 6. Calculate
Z

cos3x
1+ sin2x

dx.



Solution. We can check that P (x; y) = x3; Q(x; y) = 1 + y2 which gives R(¡x;
y) =¡R(x; y) so that substitution t= sin x would work. But of course it is easy to
observe that Z

cos3x
1+ sin2x

dx =
Z

cos2x
1+ sin2x

dsinx

=
Z

1¡ sin2x
1+ sin2x

dsinx

=
Z

1¡ t2
1+ t2

dt (t= sinx)

=
Z �

¡1+ 2
1+ t2

dt
�

= ¡t+2 arctan t+C

= ¡sinx+2 arctan(sinx)+C: (24)

Example 7. Calculate
Z

cos4x dx.

Solution. We have R(x; y)=x4. Clearly R(x; y)=R(¡x;¡y). Thus we set t= tanx
and obtain Z

cos4x =
Z

cos6xdtanx

=
Z

1
(1+ t2)3

dt: (25)

To calculate this integral we apply integration by parts:

arctan t =
Z

dt
1+ t2

= t

1+ t2
+2

Z
t2

(1+ t2)2
dt

= t
1+ t2

+2 arctan t¡ 2
Z

dt
(1+ t2)2

: (26)

Therefore Z
dt

(1+ t2)2
= 1
2

�
t

(1+ t2)
+ arctan t

�
+C: (27)

Now we integrate by parts again:Z
dt

(1+ t2)2
= t

(1+ t2)2
+4

Z
t2

(1+ t2)3
dt

= t

(1+ t2)2
+4

Z
dt

(1+ t2)2
¡ 4

Z
dt

(1+ t2)3
: (28)

Therefore Z
dt

(1+ t2)3
= 1

4

�
3
Z

dt
(1+ t2)2

+ t
(1+ t2)2

�
= 3 t

8 (1+ t2)
+ t

4 (1+ t2)2
+ 3
8
arctan t+C: (29)



Substituting back t= tanx, we �nally arrive atZ
cos4x dx = 3

8
tanx cos2x+ 1

4
tanx cos4x+ 3

8
x+C

= 3
8
sinx cosx+ 1

4
sinx cos3x+ 3

8
x+C: (30)

Exercise 7. Calculate
R

sin4x dx using t= tan x.
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