MATH 118 WINTER 2015 LECTURE 11 (Jan. 22, 2015)
P(x)

e We have seen that rational functions Q@ can in theory! always be integrated. Now we show

that another large class of functions also enjoys this property.
e Birational functions of cosx and sin .

o A polynomial of two variables is a sum of finitely many terms of the form a z* 5! where
a€R,k,le NU{0}, and x, y are the two variables.

o A birational function (or simply a rational function of x,y) is a function of the form

ggw z; where P, () are both polynomials of x, y.

o We claim that
P(cosz,sinz)

Q(cosz,sinz) dz (1)

can always be reduced, through a change of variable, to the integration of a rational
function of a single variable, and therefore such integrals can in theory always be
calculated.

o Examples.

— /tanxdx. Here P(z,y) =y, Q(z,y) =x.

/ cos"x dx. Here P(x,y)=2", Q(x,y)=1.

1 i — N
— / . dz. Here P(z,y)=1,Q(z,y)=y"

— / cos"x sin™x dz. Here P(x,y)=2"y™, Q(z,y)=1.

e Integration of Plcosz, sinz) through the universal change of variable.

Q(cosz, sinx)

o The universal change of variable is ¢t = tan( ) We notice that

2
— cos? E)_ - 2(%):1—75.
cos T cos (2 sin”( 5 et (2)
. T x 21
sinx = 251n20082 T (3)
2

dz = d(2arctanu)= e (4)

Thus under this change of variable we have

P(cosz,sinx) /R (5)

Q cosx,sinx)
where

(i)

. 1+t2’1+t2 2

R(x)—Q T N\ 118 (6)
14827 1+1¢2

1. and in practice



is rational.
Problem 1. Prove that R(z) is rational.

Examples.

dx

cosz+sinz’

Example 1. Calculate /

Solution. We apply the change of variable ¢t = tan%. Then we have

/ dz _ 1 2 qt
cosx +sinx 1—¢2 2t 14 ¢2
1+¢2 1+¢2
_ /#dt (7)
14+2t—¢2 7

We solve this integral using partial fractions. Solve 1+ 2t —t2=0 gives t; o=1+ V2.
Therefore 1 42t —t2= (1 + \/_—t) (1 — \/§—t) and we write

2 _ A n B (8)
[+20-2 1 (14v2)  t—(1-v2)
and determine
Therefore
/ 2dt V2 B 1
1+2t—1¢2 2 t—(1-v2) t—(1+v2)
t—(1—v2
— an(—\/_) +C (10)
2 - (1+v2)
Substituting back u= tan(%) we have
tan(s ) — (1 — /2
/d—gc.:ﬁn an(g) ( ) +C. (11)
cosx +sinx 2 tan(g)— 1+v2
Exercise 1. Calculate / L
COST —SsInx
dz

Exercise 2. Calculate / —
COS“x +sIn x

dz

Example 2. Calculate/m.

Solution. We have P(z,y)=1,Q(z,y) =1+ 2 y. Thus the substitution ¢ :tan% gives

dx 1 2
/1+2cosx_/1+21—t21+t2dt /3—t2dt' (12)

Apply the method of partial fractions, we have

/3—t2 [/\/_—t/\/_—i—t] 3%

+C. (13)




Substituting back ¢t = tan%, we have

/ dz \/_ +tan— N (14)
142cosx \/g \/g—tang
Exercise 3. Calculate/ . dx .

1+2sinx+3cosx

Special cases.

o The universal change of variable always works, but may not be the most efficient
approach.

sin?z + cos =

Example 3. Calculate / __Sn2r g

Solution. Let t =cosz, then we have

sin2x tdt
sin?x + cos T 1+t —1¢2

t

- 2/ <t_1+\/5>(t_1—\/5)dt
2
14— 1- L
t— t—l‘f
1 1+5 < 1) 1-5
= (1+—— |Iln|t— 41— )m|t— +C
( ﬁ) 2 (1

2

= (142 )m
1-V5
2

cos T — 1+V5 +<1—L> In|cos x —
V5

+C

\/_—i-l 2cosx

+C. 15
\/5 \/5—1+2cost (15)

= In|l +cosx — cos’x| + —=

Remark 4. To compare, let’s try the universal change of variable ¢t = tan(%). We

have
sin2x 2sinx cosx
- 2 — dx pr— -V 2 d.Z'
SIN“x + COS T SIN“x + Ccos x

2t 1—1t2
2——% 1= 2
_ 1462 1412 dt
2¢ \2 | 1—12 1 4 ¢2
R 142

B 4t(1—12) 2
B /4t2+1—t4 1+t2dt' (16)

We see that in this approach we have to deal with a much more complicated rational
function.

o The following are the most important special cases.



o

PROPOSITION 5. (SPECIAL CASES) Let R(z,y) be birational and such that

a)
b)

c)

R(—z,y)=—R(x,y), or
R(z,—y)=—R(x,y), or
R(—.’IJ, _y) = R(.’E, y)

Then f R(sin z, cos x) dx can be integrated through t = sin x, t = cos x, t = tan x,
respectively.

Proof. Let R(z,y)= P@v) yhere P, @ are polynomials that share no common factor.

a)

Q(z,y)
In this case we have
P(z,y)=R(z,y) Q(z,y) (17)
and therefore
P(-z,y)=—R(z,y) Q(-z,y). (18)
Putting the two together we have
As P, @) are polynomials, they can be written as
P(z,y)=an(y) 2"+ +ao(y), Qx,y)="bu(y)z™++bo(y). (20)

Now it is easy to check that
P(a,y) = P(-z,y)=z Pi(2%y), Qz,y)+Q(-z,y)=Q:(z*y)  (21)

where Py, (1 are polynomials.
Exercise 4. Finish the proof.
This part is left as exercise.

Exercise 5. Prove this part.

In this case we have P(x,y)=R(z,y) Q(x,y) and P(—x,—y)=R(z,y) Q(—=x,
—y). This gives
_ P(.’I},y)—i-P(—{I},—y)
9= Q)+ Qe —y) 22

As P(z,v), Q(x, ) consists of terms of the form z* 4!, we see that all the terms
with k+1[ odd are cancelled in both numerator and denominator. Now notice
that when k +1[ is even, there always holds

xkyl:(%)lxkﬂz<%>l(x2)(k+l)/2' (23)

Thus we have P(x, y) + P(—x, —y) = pl(%’ 2?) and Q(z, y) + Q(—x,
—y)= Ql(%, x2) where P, ()1 are polynomials.

Exercise 6. Finish the proof. O

More examples of the special cases.

Example 6. Calculate / _cos’s

. xZ.
1+ sin2z



Solution. We can check that P(z, y) = 23, Q(z, y) = 1 + y? which gives R(—=z,
y) = —R(z, y) so that substitution ¢ = sin z would work. But of course it is easy to

observe that
3 2
cos’x cos“x
— " dx = — " dsinzx
/ 1+ sin%z / 1+ sin?z
/ 1 —sin?z | .
= — T dsinx

2
= /1—tdt (t=sinx)

2
= / [—1+mdt]

= —t+2arctant+C

= —sinz + 2arctan(sinx) + C.

Example 7. Calculate / costz dz.

(24)

Solution. We have R(z,y)=x* Clearly R(z,y)=R(—x,—y). Thus we set ¢t =tanx

and obtain

/ costr = / cos®z dtan

1
- /md"

To calculate this integral we apply integration by parts:

arctant = /%

= ;_{_2 t—2dt
1412 (1+¢2)2
dt

t
- m—FQarCtant—Z/m.

Therefore

dt 1 t
/ (1—|—t2)2:§[(1—|—t2) +arctant}+0.

Now we integrate by parts again:

dt t t2
/(1+t2)2 B (1+t2)2+4/(1+t2)3dt

t dt dt
- (1+t2)2+4/(1+t2)2_4/(1+t2)3'

Therefore

| i = ﬂ?’/ <1f§2>2+<1+tt2>2]

3t t 3
= S0 +4(1+t2)2+§arctant+(].

(29)



Substituting back ¢ =tan x, we finally arrive at
4 3 2 1 4., 3
cos*zrdx = gtana:cos x—i—ztana}cos a;—i-gx—i-C

= %sinxcosx—i—%sinxcos%—i—%x—i—C.

Exercise 7. Calculate [ sinz dx using t =tan x.

(30)
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