MATH 118 WINTER 2015 LECTURE 1 (JAN. 5, 2015)

- Recall we have three methods to evaluate an integral $\int_{a}^{b} f(x) dx$.
 - i. By definition;
 - ii. First check that f is integrable on [a, b], then try to find a family of partitions $\{P_n\}$ such that $U(f, P_n)$ (or $L(f, P_n)$) are easy to calculate. Then calculate $\lim_{n\to\infty} U(f, P_n)$;
 - iii. Check that the three conditions for FTC1 are satisfied:
 - There is F(x) such that F' = f on (a, b);
 - This F(x) is continuous on [a, b];
 - f is integrable on [a, b].

Then

$$\int_{a}^{b} f(x) \,\mathrm{d}x = F(b) - F(a). \tag{1}$$

Exercise 1. Calculate $\int_0^1 \sin x \, dx$ using Methods ii and iii.

• Indefinite integral.

DEFINITION 1. The indefinite integral for a function $f:(a,b) \mapsto \mathbb{R}$ is the following set:

$$\{F(x) | F' = f \text{ on } (a, b)\}.$$
(2)

Denoted $\int f(x) \, \mathrm{d}x$.

THEOREM 2. Let $f(x):(a,b) \mapsto \mathbb{R}$ be such that there is $F_0(x)$ satisfying $F'_0 = f$ on (a,b). Then

$$\int f(x) \,\mathrm{d}x = \{F_0(x) + C | C \in \mathbb{R}\}.$$
(3)

Remark 3. Thanks to this theorem we often simply write

$$\int f(x) \,\mathrm{d}x = F_0(x) + C. \tag{4}$$

Proof. (OF THEOREM 2)

•
$$\{F_0(x) + C\} \subseteq \int f(x) \, \mathrm{d}x.$$

We check
 $(F_0(x) + C)' = F_0'(x) + C' = f(x) + 0 = f(x)$ (5)

on (a, b). Therefore the claim holds.

 $\circ \quad \int f(x) \, dx \subseteq \{F_0(x) + C\}.$ Let $F(x) \in \int f(x) \, dx$ be arbitrary. Let $c \in (a, b)$ be arbitrary and set $C := F(c) - F_0(c)$. Now for an arbitrary $x \in (a, b)$ different from c, by MVT we have the existence of $\xi \in (c, x)$ such that

$$\frac{[F(x) - F_0(x)] - [F(c) - F_0(c)]}{x - c} = F'(\xi) - F'_0(\xi) = f(\xi) - f(\xi) = 0$$
(6)

which leads to $F(x) - F_0(x) = C$. As x is arbitrary, we have $F(x) = F_0(x) + C$ for this particular C for all $x \in (a, b)$. Therefore the claim holds.

Thus ends the proof.

Exercise 2. Check the the assumptions for MVT are satisfied, that is (6) indeed holds.