## Math 117 Fall 2014 Lecture 48 (Dec. 3, 2014)

- Higher derivatives.
- Leibniz formula:

$$
\begin{equation*}
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)} g^{(n-k)} . \tag{1}
\end{equation*}
$$

Example 1. Calculate $(x \sin x)^{(100)}$.
Solution. We notice that $x^{(k)}=0$ for all $k \geqslant 2$. Thus

$$
\begin{equation*}
(x \sin x)^{(100)}=\binom{100}{0} x(\sin x)^{(100)}+\binom{100}{1} x^{(1)}(\sin x)^{(99)}=x \sin x-100 \cos x . \tag{2}
\end{equation*}
$$

- L'Hospital.
- Four assumptions and one conclusion:
- A1: $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ (or $\pm \infty$ );
- A2: $f, g$ differentiable on $(a-\delta, a) \cup(a, a+\delta)$ for some $\delta>0$;
- A3: $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$;
- A4: $g^{\prime} \neq 0$ on $(a-\delta, a) \cup(a, a+\delta)$ for some $\delta>0$.
- C1: If A1 - A4 are satisfied, then

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L \tag{3}
\end{equation*}
$$

- Note that $a, L$ could be either real numbers or $\pm \infty$; Also $x \rightarrow a$ could be replaced by $x \rightarrow a+$ or $x \rightarrow a-$.

Example 2. Let $f(x):=\left\{\begin{array}{ll}e^{-1 / x} & x>0 \\ 0 & x \leqslant 0\end{array}\right.$. Calculate $f^{\prime}(0), f^{\prime \prime}(0)$.

## Solution.

- $f^{\prime}(0)$.

Clearly $\lim _{x \rightarrow 0-} \frac{f(x)-f(0)}{x-0}=0$. On the other hand, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0+} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0+} \frac{e^{-1 / x}}{x} \\
& =\lim _{t \rightarrow+\infty} \frac{e^{-t}}{1 / t} \\
& =\lim _{t \rightarrow+\infty} \frac{t}{e^{t}} \\
& =\lim _{t \rightarrow+\infty} \frac{1}{e^{t}}=0 .
\end{aligned}
$$

Therefore $f^{\prime}(0)=0$.
Exercise 1. Prove by definition $\lim _{x \rightarrow 0+} \frac{e^{-1 / x}}{x}=\lim _{t \rightarrow+\infty} \frac{e^{-t}}{1 / t}$.
Exercise 2. Explain why direct application of L'Hospital to $\lim _{x \rightarrow 0+} \frac{e^{-1 / x}}{x}$ does not work.

- $f^{\prime \prime}(0)$.

We calculate

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
\frac{1}{x^{2}} e^{-1 / x} & x>0  \tag{4}\\
0 & x \leqslant 0
\end{array} .\right.
$$

Exercise 3. Apply L'Hospital to prove $\lim _{x \rightarrow 0+} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=0$.

- Taylor expansion.
- If $f\left(x_{0}\right), f^{\prime}\left(x_{0}\right), \ldots, f^{(n)}\left(x_{0}\right)$ exist, then we can define the Taylor polynomial of $f$ at $x_{0}$ to degree $n$ :

$$
\begin{equation*}
T_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \tag{5}
\end{equation*}
$$

Then the remainder is small compared to $\left(x-x_{0}\right)^{n}$ :

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-T_{n}(x)}{\left(x-x_{0}\right)^{n}}=0 . \tag{6}
\end{equation*}
$$

- If we make the stronger assumption: $f(x), \ldots, f^{(n+1)}(x)$ exist on $(a, b) \ni x_{0}$, then for every $x \in(a, b)$ there exists $c \in\left(x_{0}, x\right)$ :

$$
\begin{equation*}
f(x)-T_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} . \tag{7}
\end{equation*}
$$

Remark 3. Note that this gives

$$
\begin{equation*}
\frac{f(x)-T_{n}(x)}{\left(x-x_{0}\right)^{n}}=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right) \tag{8}
\end{equation*}
$$

and now we know much more precisely how small the remainder $f(x)-T_{n}(x)$ is compared to $\left(x-x_{0}\right)^{n}$, as long as we have some idea of $\sup _{c \in\left(x_{0}, x\right)}\left|f^{(n+1)}(c)\right|$.

Example 4. Estimate $\left|\cos x-\left(1-\frac{x^{2}}{2}\right)\right|$ for $x=10^{-1}$.
Solution. We notice $1-\frac{x^{2}}{2}$ is the Taylor polynomial of $\cos x$ at $x_{0}=0$ to degree 3 . Therefore

$$
\begin{equation*}
\left|\cos x-\left(1-\frac{x^{2}}{2}\right)\right|=\left|\frac{f^{(4)}(c)}{4!} x^{4}\right| \leqslant \frac{|x|^{4}}{24} . \tag{9}
\end{equation*}
$$

Setting $x=10^{-1}$ we see

$$
\begin{equation*}
\left|\cos \left(\frac{1}{10}\right)-0.995\right| \leqslant \frac{1}{240000} \approx 4.17 \times 10^{-6} . \tag{10}
\end{equation*}
$$

Remark 5. We can check that $\left|\cos \left(\frac{1}{10}\right)-0.995\right| \approx 4.17 \times 10^{-6}$. So our estimate is very accurate.

- Power series.

Example 6. Find all $x \in \mathbb{R}$ such that $\sum_{n=1}^{\infty} n x^{n}$ is convergent.

Solution. We calculate the radius of convergence:

$$
\begin{equation*}
\rho:=\left(\underset{n \rightarrow \infty}{\limsup } n^{1 / n}\right)=1 . \tag{11}
\end{equation*}
$$

Therefore the power series is convergent for $|x|<1$ and divergent for $|x|>1$.
Next we check the convergence/divergence at $x= \pm 1$. For such $x$ we have $\lim _{n \rightarrow \infty} n x^{n}=0$ does not hold and therefore the power series diverges.

Summarizing, we see that the power series converges for $|x|<1$ and diverges for $|x| \geqslant 1$.

