
Math 117 Fall 2014 Lecture 48 (Dec. 3, 2014)

� Higher derivatives.

� Leibniz formula:

(f g)(n)=
X
k=0

n �
n
k

�
f (k) g(n¡k): (1)

Example 1. Calculate (x sinx)(100):
Solution. We notice that x(k)=0 for all k> 2. Thus

(x sinx)(100)=
�100
0

�
x (sinx)(100)+

�100
1

�
x(1) (sinx)(99)=x sinx¡ 100 cosx: (2)

� L'Hospital.

� Four assumptions and one conclusion:

¡ A1: limx!af(x)= limx!ag(x)= 0 (or �1);

¡ A2: f ; g di�erentiable on (a¡ �; a)[ (a; a+ �) for some � > 0;

¡ A3: limx!a
f 0(x)

g 0(x)
=L;

¡ A4: g 0=/ 0 on (a¡ �; a)[ (a; a+ �) for some � > 0.

¡ C1: If A1 � A4 are satis�ed, then

lim
x!a

f(x)
g(x)

=L: (3)

� Note that a; L could be either real numbers or �1; Also x! a could be replaced by
x! a+ or x! a¡ .

Example 2. Let f(x) :=

(
e¡1/x x> 0
0 x6 0 . Calculate f 0(0); f 00(0).

Solution.

� f 0(0).
Clearly limx!0¡

f(x)¡ f(0)

x¡ 0 =0. On the other hand, we have

lim
x!0+

f(x)¡ f(0)
x¡ 0 = lim

x!0+

e¡1/x

x

= lim
t!+1

e¡t

1/t

= lim
t!+1

t
et

= lim
t!+1

1
et
=0:

Therefore f 0(0)= 0.

Exercise 1. Prove by de�nition limx!0+
e¡1/x

x
= limt!+1

e¡t

1/t
.

Exercise 2. Explain why direct application of L'Hospital to limx!0+
e¡1/x

x
does not work.



� f 00(0).
We calculate

f 0(x)=

8<: 1
x2
e¡1/x x> 0

0 x6 0
: (4)

Exercise 3. Apply L'Hospital to prove limx!0+
f 0(x)¡ f 0(0)

x¡ 0 =0.

� Taylor expansion.

� If f(x0); f 0(x0); :::; f(n)(x0) exist, then we can de�ne the Taylor polynomial of f at
x0 to degree n:

Tn(x)= f(x0)+ f 0(x0) (x¡x0)+ ���+
f (n)(x0)

n!
(x¡x0)n: (5)

Then the remainder is small compared to (x¡x0)n:

lim
x!x0

f(x)¡Tn(x)
(x¡x0)n

=0: (6)

� If we make the stronger assumption: f(x); :::; f(n+1)(x) exist on (a; b)3 x0, then for
every x2 (a; b) there exists c2 (x0; x):

f(x)¡Tn(x)=
f (n+1)(c)
(n+1)!

(x¡x0)n+1: (7)

Remark 3. Note that this gives

f(x)¡Tn(x)
(x¡x0)n

= f (n+1)(c)
(n+1)!

(x¡x0) (8)

and now we know much more precisely how small the remainder f(x) ¡ Tn(x) is
compared to (x¡x0)n, as long as we have some idea of supc2(x0;x)

��f (n+1)(c)��.
Example 4. Estimate

���cosx¡�
1¡ x2

2

���� for x= 10¡1.

Solution. We notice 1¡ x2

2
is the Taylor polynomial of cos x at x0= 0 to degree 3.

Therefore ����cosx¡�
1¡ x2

2

�����=
�����f (4)(c)4!

x4

�����6 jxj424
: (9)

Setting x= 10¡1 we see����cos� 1
10

�
¡ 0.995

����6 1
240000

� 4.17� 10¡6: (10)

Remark 5. We can check that
���cos� 1

10

�
¡ 0.995

���� 4.17� 10¡6. So our estimate is
very accurate.

� Power series.

Example 6. Find all x2R such that
P

n=1
1 nxn is convergent.



Solution. We calculate the radius of convergence:

� :=
�
limsup
n!1

n1/n
�
=1: (11)

Therefore the power series is convergent for jxj< 1 and divergent for jxj> 1.
Next we check the convergence/divergence at x=�1. For such x we have limn!1n x

n=0
does not hold and therefore the power series diverges.

Summarizing, we see that the power series converges for jxj<1 and diverges for jxj>1.
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