Math 117 Fall 2014 Lecture 47 (Dec. 1, 2014)

- Proving integrability.
- Definition: $\inf _{P} U(f, P)=\sup _{P} L(f, P)$.
- If there is $\left\{P_{n}\right\}$ such that $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)$.
- If there is $\left\{P_{n}\right\}$ such that $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$.

Example 1. Prove: If there is $\left\{P_{n}\right\}$ such that $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$, then f is integrable.

Proof. By definition we have

$$
\begin{equation*}
U\left(f, P_{n}\right) \geqslant U(f), \quad L\left(f, P_{n}\right) \leqslant L(f) \Longrightarrow U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \geqslant U(f)-L(f) \tag{1}
\end{equation*}
$$

On the other hand we know $U(f) \geqslant L(f)$. Applying Comparison Theorem to

$$
\begin{equation*}
U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \geqslant U(f)-L(f) \geqslant 0 \tag{2}
\end{equation*}
$$

we have $0 \geqslant U(f)-L(f) \geqslant 0$ which gives $U(f)=L(f)$ and integrability.
Example 2. Let $f:[a, b] \mapsto \mathbb{R}$ be increasing. Then f is integrable on $[a, b]$.
Proof. Let $x_{k}:=a+\frac{b-a}{n} \cdot k$ and take $P_{n}=\left\{x_{0}, \ldots, x_{n}\right\}$. Then we have

$$
\begin{align*}
U\left(f, P_{n}\right)-L\left(f, P_{n}\right) & =\sum_{k=1}^{n}\left[\sup _{\left[x_{k-1}, x_{k}\right]} f-\inf _{\left[x_{k-1}, x_{k}\right]} f\right]\left(x_{k}-x_{k-1}\right) \\
& =\sum_{k=1}^{n}\left[f\left(x_{k}\right)-f\left(x_{k-1}\right)\right] \frac{b-a}{n} \\
& =\frac{b-a}{n} \sum_{k=1}^{n}\left[f\left(x_{k}\right)-f\left(x_{k-1}\right)\right] \\
& =\frac{b-a}{n}\left[f\left(x_{n}\right)-f\left(x_{0}\right)\right]=\frac{(b-a)(f(b)-f(a))}{n} . \tag{3}
\end{align*}
$$

Thus $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$ and integrability follows.
Exercise 1. Let $f:[a, b] \mapsto \mathbb{R}$ be decreasing. Then f is integrable on $[a, b]$.
Remark 3. Let $f:[a, b] \mapsto \mathbb{R}$ be increasing. It turns out that it can at most be discontinuous at countably many points. An example is as follows. Let $\mathbb{Q} \cap[a, b]=\left\{r_{1}, r_{2}, \ldots\right\}$. Define

$$
\begin{equation*}
f(x):=\sum_{k=1}^{\infty} 2^{-k} \chi_{\left[r_{k}, b\right]}(x) . \tag{4}
\end{equation*}
$$

where $\chi_{[r, b]}(x):=\left\{\begin{array}{ll}1 & x \geqslant r \\ 0 & x<r\end{array}\right.$.
Problem 1. Prove that $f(x)$ is increasing and discontinuous at every rational point but continuous at every irrational point.

- Fundamental Theorems of Calculus.
- FTC1.
- Calculation of $\int_{a}^{b} f(x) \mathrm{d} x$.
- Key: Find $F(x)$ continuous on $[a, b]$ such that $F^{\prime}(x)=f(x)$ on (a, b).

Example 4. Let $F(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Then $F(x)$ is differentiable everywhere, but $f(x)=F^{\prime}(x)$ is not integrable on $[0,1]$, as $f(x)$ is not bounded on this interval.

- FTC2.
- Note that only when $f(x)$ is continuous at c is $G(x)=\int_{a}^{x} f(t) \mathrm{d} t$ is differentiable at c and such that $G^{\prime}(c)=f(c)$.

Example 5. Let $f(x)$ be continuous on $[a, b]$. Then for any $c, d \in[a, b]$ we have

$$
\begin{equation*}
\int_{c}^{d} f(x) \mathrm{d} x=F(d)-F(c) \tag{5}
\end{equation*}
$$

where F is any anti-derivative of f, that is $F^{\prime}(x)=f(x)$ on (a, b). Furthermore $G(x):=$ $\int_{a}^{x} f(t) \mathrm{d} t$ is also an anti-derivative of f.

