MATH 117 FALL 2014 LECTURE 47 (Dec. 1, 2014)

- Proving integrability.
 - Definition: $\inf_{P} U(f, P) = \sup_{P} L(f, P)$.
 - If there is $\{P_n\}$ such that $\lim_{n\to\infty} U(f, P_n) = \lim_{n\to\infty} L(f, P_n)$.
 - $\circ \quad \text{If there is } \{P_n\} \text{ such that } \lim_{n \to \infty} \left[U(f,P_n) L(f,P_n) \right] = 0.$

Example 1. Prove: If there is $\{P_n\}$ such that $\lim_{n\to\infty} [U(f, P_n) - L(f, P_n)] = 0$, then f is integrable.

Proof. By definition we have

$$U(f, P_n) \ge U(f), \quad L(f, P_n) \le L(f) \Longrightarrow U(f, P_n) - L(f, P_n) \ge U(f) - L(f).$$
(1)

On the other hand we know $U(f) \ge L(f)$. Applying Comparison Theorem to

$$U(f, P_n) - L(f, P_n) \ge U(f) - L(f) \ge 0$$
⁽²⁾

we have $0 \ge U(f) - L(f) \ge 0$ which gives U(f) = L(f) and integrability. \Box

Example 2. Let $f: [a, b] \mapsto \mathbb{R}$ be increasing. Then f is integrable on [a, b].

Proof. Let $x_k := a + \frac{b-a}{n} \cdot k$ and take $P_n = \{x_0, ..., x_n\}$. Then we have

$$U(f, P_n) - L(f, P_n) = \sum_{k=1}^n \left[\sup_{[x_{k-1}, x_k]} f - \inf_{[x_{k-1}, x_k]} f \right] (x_k - x_{k-1})$$

$$= \sum_{k=1}^n \left[f(x_k) - f(x_{k-1}) \right] \frac{b-a}{n}$$

$$= \frac{b-a}{n} \sum_{k=1}^n \left[f(x_k) - f(x_{k-1}) \right]$$

$$= \frac{b-a}{n} \left[f(x_n) - f(x_0) \right] = \frac{(b-a) \left(f(b) - f(a) \right)}{n}.$$
(3)

Thus $\lim_{n\to\infty} [U(f, P_n) - L(f, P_n)] = 0$ and integrability follows.

Exercise 1. Let $f:[a,b]\mapsto \mathbb{R}$ be decreasing. Then f is integrable on [a,b].

Remark 3. Let $f: [a, b] \mapsto \mathbb{R}$ be increasing. It turns out that it can at most be discontinuous at countably many points. An example is as follows. Let $\mathbb{Q} \cap [a, b] = \{r_1, r_2, ...\}$. Define

$$f(x) := \sum_{k=1}^{\infty} 2^{-k} \chi_{[r_k, b]}(x).$$
(4)

where $\chi_{[r,b]}(x) := \begin{cases} 1 & x \ge r \\ 0 & x < r \end{cases}$.

Problem 1. Prove that f(x) is increasing and discontinuous at every rational point but continuous at every irrational point.

• Fundamental Theorems of Calculus.

$$\circ$$
 FTC1.

- Calculation of $\int_{a}^{b} f(x) dx$.

- Key: Find F(x) continuous on [a, b] such that F'(x) = f(x) on (a, b).

Example 4. Let $F(x) = \begin{cases} x^2 \sin \frac{1}{x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Then F(x) is differentiable everywhere, but f(x) = F'(x) is not integrable on [0, 1], as f(x) is not bounded on this interval.

- \circ FTC2.
 - Note that only when f(x) is continuous at c is $G(x) = \int_{a}^{x} f(t) dt$ is differentiable at c and such that G'(c) = f(c).

Example 5. Let f(x) be continuous on [a, b]. Then for any $c, d \in [a, b]$ we have

$$\int_{c}^{d} f(x) \,\mathrm{d}x = F(d) - F(c) \tag{5}$$

where F is any anti-derivative of f, that is F'(x) = f(x) on (a, b). Furthermore $G(x) := \int_a^x f(t) dt$ is also an anti-derivative of f.