## Math 117 Fall 2014 Lecture 46 (Nov. 28, 2014)

- Power series

Definition 1. The formal sum $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is called a "power series".
Let $c \in \mathbb{R}$. If the series $\sum_{n=0}^{\infty} a_{n}\left(c-x_{0}\right)^{n}$ converges to $L \in \mathbb{R}$, then the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ becomes a rule of mapping $c \mapsto L$. Therefore, if we let

$$
\begin{equation*}
A:=\left\{c \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_{n}\left(c-x_{0}\right)^{n}\right\}, \tag{1}
\end{equation*}
$$

then we can treat $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ as a function with domain $A$.
Example 2. Let $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ be a power series. Then $x_{0} \in A$.
Example 3. Consider $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. We notice that this is the Taylor series of $e^{x}$ at $x_{0}=0$. Let $c \in \mathbb{R}$ be arbitrary, denote

$$
\begin{equation*}
s_{n}:=\sum_{k=0}^{n} \frac{c^{k}}{k!} . \tag{2}
\end{equation*}
$$

Applying Taylor's expansion with Lagrange form of remainder, we have

$$
\begin{equation*}
\left|e^{c}-s_{n}\right|=\left|\frac{e^{\xi}}{(n+1)!} c^{n+1}\right|<e^{|c|} \frac{|c|^{n+1}}{(n+1)!} \tag{3}
\end{equation*}
$$

where $\xi \in(0, c)$.
Exercise 1. Let $c \in \mathbb{R}$ be arbitrary. Prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{|c|^{n}}{n!}=0 . \tag{4}
\end{equation*}
$$

Now let $\varepsilon>0$ be arbitrary. Let $N \in \mathbb{N}$ be such that for all $n>N, \frac{e^{|c|}|c|^{n+1}}{(n+1)!}<\varepsilon$. Then for such $n$ we have $\left|e^{c}-s_{n}\right|<\varepsilon$. Thus by definition $\sum_{n=0}^{\infty} \frac{c^{n}}{n!}=e^{c}$.

From above we see that $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges to $e^{x}$ for every $x \in \mathbb{R}$. Thus $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ defines a function with domain $\mathbb{R}$ and this function turns out to be $e^{x}$.

Example 4. Consider $\sum_{n=0}^{\infty}(x-1)^{n}$. It is clear that $|c-1|<1$ is necessary for convergence of $\sum_{n=0}^{\infty}(c-1)^{n}$. On the other hand, for such $c$ we have

$$
\begin{equation*}
\sum_{k=0}^{n}(c-1)^{k}=\frac{1-(c-1)^{n+1}}{2-c} \longrightarrow \frac{1}{2-c} \tag{5}
\end{equation*}
$$

as $n \longrightarrow \infty$. Consequently $\sum_{n=0}^{\infty}(x-1)^{n}$ defines a function with domain $(-1,1)$ and inside this interval it equals $\frac{1}{2-x}$.

Remark 5. Note that the domain of $\frac{1}{2-x}$ is larger than $(-1,1)$.
Exercise 2. Prove that $\sum_{n=0}^{\infty}(x-1)^{n}$ is the Taylor series of $\frac{1}{2-x}$ at $x_{0}=1$.

- Radius of Convergence.

THEOREM 6. Let $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ be an arbitrary power series. Define $\rho:=$ $\left[\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}\right]^{-1}$. Then
a) $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is convergent for $\left|x-x_{0}\right|<\rho$;
b) $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is divergent for $\left|x-x_{0}\right|>\rho$.

## Proof.

a) As $\left|x-x_{0}\right|<\rho$, there is $\varepsilon>0$ such that $r:=\left|x-x_{0}\right|\left(\frac{1}{\rho}+\varepsilon\right)<1$. Now by definition

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\frac{1}{\rho} \Longrightarrow \exists N \in \mathbb{N}, \forall n>N, \sup _{k \geqslant n}\left\{\left|a_{k}\right|^{1 / k}\right\}<\frac{1}{\rho}+\varepsilon . \tag{6}
\end{equation*}
$$

Therefore $\forall n>N,\left|a_{n}\right|^{1 / n}<\frac{1}{\rho}+\varepsilon$. Consequently for $n>N$,

$$
\begin{equation*}
\left|a_{n}\left(x-x_{0}\right)^{n}\right|<r^{n} . \tag{7}
\end{equation*}
$$

As $r \in(0,1)$ convergence of $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ follows.
b) Denote $\varepsilon:=\frac{1}{\rho}-\frac{1}{\left|x-x_{0}\right|}>0$. By definition

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\frac{1}{\rho} \Longrightarrow \exists N \in \mathbb{N}, \forall n>N, \sup _{k \geqslant n}\left\{\left|a_{k}\right|^{1 / k}\right\} \geqslant \frac{1}{\rho}-\varepsilon=\frac{1}{\left|x-x_{0}\right|} . \tag{8}
\end{equation*}
$$

Consequently $\left|a_{n}\left(x-x_{0}\right)^{n}\right| \geqslant 1$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{n}\left(x-x_{0}\right)^{n}\right| \geqslant 1 \tag{9}
\end{equation*}
$$

which means $\lim _{n \rightarrow \infty} a_{n}\left(x-x_{0}\right)^{n}=0$ does not hold and divergence follows.
Remark 7. The situation ta $\left|x-x_{0}\right|=\rho$ is complicated. See the following examples.
Example 8. Consider $\sum_{n=0}^{\infty} x^{n}$. Then $a_{n}=1$ and $\rho=1$. We see that the series diverges at $x= \pm 1$.

Example 9. Consider $\sum_{n=0}^{\infty} \frac{x^{n}}{n}$. Then $a_{n}=\frac{1}{n}$ and $\rho=1$.
Exercise 3. Prove $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n}=1$.

- At $x=1$ the series diverges;
- At $x=-1$ the series converges.

Example 10. Consider $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}}$. Then $a_{n}=\frac{1}{n^{2}}$ and $\rho=1$. At $x= \pm 1$ the series still converge.

