
Math 117 Fall 2014 Lecture 46 (Nov. 28, 2014)

� Power series

Definition 1. The formal sum
P

n=0
1 an (x¡ x0)n is called a �power series�.

Let c 2 R. If the series
P

n=0
1 an (c ¡ x0)

n converges to L 2 R, then the power seriesP
n=0
1 an (x¡ x0)n becomes a rule of mapping c 7!L. Therefore, if we let

A :=

(
c2Rj

X
n=0

1

an (c¡ x0)n
)
; (1)

then we can treat
P

n=0
1 an (x¡x0)n as a function with domain A.

Example 2. Let
P

n=0
1 an (x¡x0)n be a power series. Then x02A.

Example 3. Consider
P

n=0
1 xn

n!
. We notice that this is the Taylor series of ex at x0=0. Let

c2R be arbitrary, denote

sn :=
X
k=0

n
ck

k!
: (2)

Applying Taylor's expansion with Lagrange form of remainder, we have

jec¡ snj=
���� e�

(n+1)!
cn+1

����<ejcj
jcjn+1
(n+1)!

(3)

where � 2 (0; c).

Exercise 1. Let c2R be arbitrary. Prove

lim
n!1

jcjn
n!

= 0: (4)

Now let "> 0 be arbitrary. Let N 2N be such that for all n>N , e
jcj jcjn+1
(n+1)!

<". Then for
such n we have jec¡ snj<". Thus by de�nition

P
n=0
1 cn

n!
= ec.

From above we see that
P

n=0
1 xn

n!
converges to ex for every x2R. Thus

P
n=0
1 xn

n!
de�nes

a function with domain R and this function turns out to be ex.

Example 4. Consider
P

n=0
1 (x¡1)n. It is clear that jc¡1j< 1 is necessary for convergence

of
P

n=0
1 (c¡ 1)n. On the other hand, for such c we haveX

k=0

n

(c¡ 1)k= 1¡ (c¡ 1)n+1
2¡ c ¡! 1

2¡ c (5)

as n¡!1. Consequently
P

n=0
1 (x¡ 1)n de�nes a function with domain (¡1; 1) and inside

this interval it equals 1

2¡x .

Remark 5. Note that the domain of 1

2¡x is larger than (¡1; 1).

Exercise 2. Prove that
P

n=0

1
(x¡ 1)n is the Taylor series of 1

2¡ x
at x0=1.

� Radius of Convergence.



Theorem 6. Let
P

n=0
1 an (x ¡ x0)

n be an arbitrary power series. Define � :=�
limsupn!1 janj1/n

�¡1. Then
a)

P
n=0
1 an (x¡ x0)n is convergent for jx¡x0j< �;

b)
P

n=0
1 an (x¡ x0)n is divergent for jx¡ x0j> �.

Proof.

a) As jx¡ x0j< �, there is "> 0 such that r := jx¡ x0j
�
1

�
+ "

�
< 1. Now by de�nition

limsup
n!1

janj1/n=
1
�
=)9N 2N;8n>N ; sup

k>n

�
jak j1/k

	
<
1
�
+ ": (6)

Therefore 8n>N ; janj1/n< 1

�
+ ". Consequently for n>N ,

jan (x¡x0)nj<rn: (7)

As r2 (0; 1) convergence of
P

n=0
1 an (x¡ x0)n follows.

b) Denote " := 1

�
¡ 1

jx¡x0j
> 0. By de�nition

limsup
n!1

janj1/n=
1
�
=)9N 2N;8n>N ; sup

k>n

�
jak j1/k

	
> 1
�
¡ "= 1

jx¡x0j
: (8)

Consequently jan (x¡x0)nj> 1 and

limsup
n!1

jan (x¡ x0)nj> 1 (9)

which means limn!1an (x¡x0)n=0 does not hold and divergence follows. �

Remark 7. The situation ta jx¡ x0j= � is complicated. See the following examples.

Example 8. Consider
P

n=0
1 xn. Then an=1 and �=1. We see that the series diverges at

x=�1.

Example 9. Consider
P

n=0
1 xn

n
. Then an=

1

n
and �=1.

Exercise 3. Prove limn!1
¡ 1
n

�
1/n=1.

� At x=1 the series diverges;

� At x=¡1 the series converges.

Example 10. Consider
P

n=0
1 xn

n2
. Then an=

1

n2
and �=1. At x=�1 the series still converge.
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