Power series

DEFINITION 1. The formal sum $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ is called a "power series".

Let $c \in \mathbb{R}$. If the series $\sum_{n=0}^{\infty} a_n (c - x_0)^n$ converges to $L \in \mathbb{R}$, then the power series $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ becomes a rule of mapping $c \mapsto L$. Therefore, if we let

$$A := \left\{ c \in \mathbb{R} | \sum_{n=0}^{\infty} a_n (c - x_0)^n \right\},\tag{1}$$

then we can treat $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ as a function with domain A.

Example 2. Let $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be a power series. Then $x_0 \in A$.

Example 3. Consider $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. We notice that this is the Taylor series of e^x at $x_0 = 0$. Let $c \in \mathbb{R}$ be arbitrary, denote

$$s_n := \sum_{k=0}^n \frac{c^k}{k!}.$$
(2)

Applying Taylor's expansion with Lagrange form of remainder, we have

$$|e^{c} - s_{n}| = \left|\frac{e^{\xi}}{(n+1)!}c^{n+1}\right| < e^{|c|}\frac{|c|^{n+1}}{(n+1)!}$$
(3)

where $\xi \in (0, c)$.

Exercise 1. Let $c \in \mathbb{R}$ be arbitrary. Prove

$$\lim_{n \to \infty} \frac{|c|^n}{n!} = 0.$$
(4)

Now let $\varepsilon > 0$ be arbitrary. Let $N \in \mathbb{N}$ be such that for all n > N, $\frac{e^{|c|} |c|^{n+1}}{(n+1)!} < \varepsilon$. Then for such n we have $|e^c - s_n| < \varepsilon$. Thus by definition $\sum_{n=0}^{\infty} \frac{c^n}{n!} = e^c$. From above we see that $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges to e^x for every $x \in \mathbb{R}$. Thus $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ defines

a function with domain \mathbb{R} and this function turns out to be e^x .

Example 4. Consider $\sum_{n=0}^{\infty} (x-1)^n$. It is clear that |c-1| < 1 is necessary for convergence of $\sum_{n=0}^{\infty} (c-1)^n$. On the other hand, for such c we have

$$\sum_{k=0}^{n} (c-1)^{k} = \frac{1 - (c-1)^{n+1}}{2 - c} \longrightarrow \frac{1}{2 - c}$$
(5)

as $n \longrightarrow \infty$. Consequently $\sum_{n=0}^{\infty} (x-1)^n$ defines a function with domain (-1,1) and inside this interval it equals $\frac{1}{2-x}$.

Remark 5. Note that the domain of $\frac{1}{2-x}$ is larger than (-1, 1).

Exercise 2. Prove that $\sum_{n=0}^{\infty} (x-1)^n$ is the Taylor series of $\frac{1}{2-x}$ at $x_0 = 1$.

Radius of Convergence.

THEOREM 6. Let $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be an arbitrary power series. Define $\rho := [\limsup_{n \to \infty} |a_n|^{1/n}]^{-1}$. Then

- a) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is convergent for $|x-x_0| < \rho$;
- b) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is divergent for $|x-x_0| > \rho$.

Proof.

a) As $|x - x_0| < \rho$, there is $\varepsilon > 0$ such that $r := |x - x_0| \left(\frac{1}{\rho} + \varepsilon\right) < 1$. Now by definition

$$\limsup_{n \to \infty} |a_n|^{1/n} = \frac{1}{\rho} \Longrightarrow \exists N \in \mathbb{N}, \forall n > N, \sup_{k \ge n} \left\{ |a_k|^{1/k} \right\} < \frac{1}{\rho} + \varepsilon.$$
(6)

Therefore $\forall n > N$, $|a_n|^{1/n} < \frac{1}{\rho} + \varepsilon$. Consequently for n > N,

$$|a_n (x - x_0)^n| < r^n. (7)$$

As $r \in (0, 1)$ convergence of $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ follows.

b) Denote $\varepsilon := \frac{1}{\rho} - \frac{1}{|x - x_0|} > 0$. By definition

$$\limsup_{n \to \infty} |a_n|^{1/n} = \frac{1}{\rho} \Longrightarrow \exists N \in \mathbb{N}, \forall n > N, \sup_{k \ge n} \left\{ |a_k|^{1/k} \right\} \ge \frac{1}{\rho} - \varepsilon = \frac{1}{|x - x_0|}.$$
 (8)

Consequently $|a_n (x - x_0)^n| \ge 1$ and

$$\limsup_{n \to \infty} |a_n (x - x_0)^n| \ge 1 \tag{9}$$

which means $\lim_{n\to\infty} a_n (x-x_0)^n = 0$ does not hold and divergence follows.

Remark 7. The situation ta
$$|x - x_0| = \rho$$
 is complicated. See the following examples.

Example 8. Consider $\sum_{n=0}^{\infty} x^n$. Then $a_n = 1$ and $\rho = 1$. We see that the series diverges at $x = \pm 1$.

Example 9. Consider $\sum_{n=0}^{\infty} \frac{x^n}{n}$. Then $a_n = \frac{1}{n}$ and $\rho = 1$. **Exercise 3.** Prove $\lim_{n\to\infty} (\frac{1}{n})^{1/n} = 1$.

- At x = 1 the series diverges;
- At x = -1 the series converges.

Example 10. Consider $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$. Then $a_n = \frac{1}{n^2}$ and $\rho = 1$. At $x = \pm 1$ the series still converge.