Math 117 Fall 2014 Lecture 45 (Nov. 27, 2014)

Read: Bowman

Example 1. Prove that e is irrational.
Proof. Assume the contrary: $e=\frac{p}{q}$. Take $n>\max \{q, e\}$. We apply Taylor expansion with Lagrange form of remainder to e^{x} with $x_{0}=0$ and $x=1$:

$$
\begin{equation*}
\frac{p}{q}=e=1+1+\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n!}+\frac{e^{c}}{(n+1)!} \tag{1}
\end{equation*}
$$

where $c \in(0,1)$. Multiply both sides by n ! we have

$$
\begin{equation*}
\frac{p}{q} \cdot(n!)=\left[1+1+\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n!}\right] \cdot(n!)+\frac{e^{c}}{n+1} . \tag{2}
\end{equation*}
$$

As $n>q, q \mid n!$. Therefore $\frac{p}{q} \cdot(n!) \in \mathbb{Z}$. On the other hand clearly $\left[1+1+\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n!}\right](n!) \in \mathbb{Z}$. Therefore $\frac{e^{c}}{n+1} \in \mathbb{Z}$. However, as $c \in(0,1), e^{c} \in(1, e)$ and $\frac{e^{c}}{n+1} \in\left(\frac{1}{n+1}, \frac{e}{n+1}\right) \subset(0,1)$ and cannot be an integer. Contradiction.

Example 2. Prove that e^{2} is irrational.
Proof. Assume the contrary: $e^{2}=\frac{p}{q}$ with $q>0, p, q \in \mathbb{Z}$. This means $q e=p e^{-1}$. Apply Taylor expansion with Lagrange form of remainder to e^{x} with $x_{0}=0$ and $x=1$ for the left hand side and -1 for the righ hand side up to $n>q e+|p|$ and even:

$$
\begin{equation*}
q\left[1+1+\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n!}+\frac{e^{c_{1}}}{(n+1)!}\right]=p\left[\frac{1}{2}-\frac{1}{6}+\cdots+\frac{(-1)^{n}}{n!}+\frac{(-1)^{n+1} e^{c_{2}}}{(n+1)!}\right] \tag{3}
\end{equation*}
$$

where $c_{1} \in(0,1), c_{2} \in(-1,0)$. Multiply both sides by n ! and re-arrange, we have

$$
\begin{equation*}
\left\{-q\left[1+1+\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n!}\right]+p\left[\frac{1}{2}-\frac{1}{6}+\cdots+\frac{(-1)^{n}}{n!}\right]\right\}(n!)=\frac{q e^{c_{1}}+(-1)^{n+2} e^{c_{2}}}{n+1}:=R . \tag{4}
\end{equation*}
$$

Thus $R \in \mathbb{Z}$. By our choice of n, we see that $R \in(0,1)$. Contradiction.
Example 3. Estimate how well is $\frac{\pi}{4}$ approximated by $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$.
Solution. We expand $\arctan x$ at $x_{0}=0$ and $x=1$, up to degree $2 n+2$:

$$
\begin{equation*}
\frac{\pi}{4}=\arctan 1=1-\frac{1}{3}+\frac{1}{5}-\cdots+\frac{(-1)^{n}}{2 n+1}+\frac{y^{(2 n+3)}(c)}{(2 n+3)!} \tag{5}
\end{equation*}
$$

where $c \in(0,1)$ and $y(x):=\arctan x$. Recall that

$$
\begin{equation*}
y^{(2 n+3)}(c)=(2 n+2)!(\cos y)^{2 n+3} \sin \left((2 n+2)\left(y+\frac{\pi}{2}\right)\right) \tag{6}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\left|\frac{\pi}{4}-\left(1-\frac{1}{3}+\frac{1}{5}-\cdots+\frac{(-1)^{n}}{2 n+1}\right)\right|<\frac{1}{2 n+3} . \tag{7}
\end{equation*}
$$

Exercise 1. Prove that this estimate is sharp, in the sense that there is $c>0$ such that there are infinitely many n satisfying

$$
\begin{equation*}
\left|\frac{\pi}{4}-\left(1-\frac{1}{3}+\frac{1}{5}-\cdots+\frac{(-1)^{n}}{2 n+1}\right)\right| \geqslant \frac{c}{2 n+3} \tag{8}
\end{equation*}
$$

Remark 4. We see that calculating π through $4\left(1-\frac{1}{3}+\frac{1}{5}-\cdots+\frac{(-1)^{n}}{2 n+1}\right)$ is not efficient. It is much more efficient to take advantage if trig identities such as

$$
\begin{equation*}
\frac{\pi}{4}=\arctan \left(\frac{1}{2}\right)+\arctan \left(\frac{1}{3}\right) \tag{9}
\end{equation*}
$$

