
Math 117 Fall 2014 Lecture 45 (Nov. 27, 2014)

Read: Bowman

Example 1. Prove that e is irrational.

Proof. Assume the contrary: e= p

q
. Take n>maxfq; eg. We apply Taylor expansion with Lagrange

form of remainder to ex with x0=0 and x=1:
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where c2 (0; 1). Multiply both sides by n! we have
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As n> q, qjn!. Therefore p
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an integer. Contradiction. �

Example 2. Prove that e2 is irrational.

Proof. Assume the contrary: e2 = p

q
with q > 0; p; q 2 Z. This means q e = p e¡1. Apply Taylor

expansion with Lagrange form of remainder to ex with x0=0 and x=1 for the left hand side and
¡1 for the righ hand side up to n> q e+ jpj and even:
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where c12 (0; 1); c22 (¡1; 0). Multiply both sides by n! and re-arrange, we have�
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Thus R2Z. By our choice of n, we see that R2 (0; 1). Contradiction. �

Example 3. Estimate how well is �
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Solution. We expand arctanx at x0=0 and x=1, up to degree 2n+2:
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where c2 (0; 1) and y(x) := arctanx. Recall that
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Exercise 1. Prove that this estimate is sharp, in the sense that there is c>0 such that there are in�nitely many
n satisfying �����4 ¡
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Remark 4. We see that calculating � through 4
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is not e�cient. It is much

more e�cient to take advantage if trig identities such as
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