Math 117 Fall 2014 Lecture 44 (Nov. 26, 2014)

Read: Bowman §4.G; 314 Differentiation §4.2.

- Taylor Expansion.

Let $n \in \mathbb{N} \cup\{0\}, x_{0} \in \mathbb{R}, f: \mathbb{R} \mapsto \mathbb{R}$. Define

- Taylor polynomial of f at x_{0} of degree n :

$$
\begin{equation*}
T_{n}(x):=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} . \tag{1}
\end{equation*}
$$

- The "remainder" term:

$$
\begin{equation*}
R_{n}(x):=f(x)-T_{n}(x) . \tag{2}
\end{equation*}
$$

Theorem 1. (Taylor Expansion with Peano Form of Remainder) If $f^{(n)}\left(x_{0}\right)$ exists, then

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{R_{n}(x)}{\left(x-x_{0}\right)^{n}}=0 \tag{3}
\end{equation*}
$$

Remark 2. Note that the existence of $f^{(n)}\left(x_{0}\right)$ is necessary for $T_{n}(x)$ be defined so the hypothesis is already minimal.

Remark 3. In the case $n=0$ Theorem 1 becomes $\lim _{x \rightarrow x_{0}}\left[f(x)-f\left(x_{0}\right)\right]=0$ which is simply continuity of f at x_{0}.

Exercise 1. Let $n \in \mathbb{N}$. Prove or disprove: If there is a polynomial P_{n} of degree n such that $\lim _{x \rightarrow 0} \frac{f(x)-P_{n}(x)}{x^{n}}=0$, then $f^{(n)}(0)$ exists. (Hint: ${ }^{1}$)

Theorem 4. (Taylor Expansion with Lagrange Form of Remainder) If f, f^{\prime}, \ldots, $f^{(n)}$ are continuous on $\left[x_{0}, x\right]^{2}$ and $f^{(n)}$ is differentiable on $\left(x_{0}, x\right)$, then there is $c \in\left(x_{0}, x\right)$ such that

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} \tag{4}
\end{equation*}
$$

Remark 5. Note that the assumption is also minimal already.
We give two proofs for the case $n=1$ and leave the case of general n as exercises. We need to show there is $c \in\left(x_{0}, x\right)$ such that

$$
\begin{equation*}
f(x)=T_{1}(x)+\frac{f^{\prime \prime}(c)}{2}\left(x-x_{0}\right)^{2} . \tag{5}
\end{equation*}
$$

Proof. (Normal) Fix x_{0}, x. Then there is $r \in \mathbb{R}$ such that $R_{n}(x)=r\left(x-x_{0}\right)^{2}$.
Define

$$
\begin{equation*}
\phi(t):=f(t)-\left[T_{1}(t)+r\left(t-x_{0}\right)^{2}\right] . \tag{6}
\end{equation*}
$$

We check $\phi(x)=\phi\left(x_{0}\right)=0$. Application of Rolle's Theorem yields the existence of $c_{1} \in\left(x_{0}, x\right)$ such that $\phi^{\prime}\left(c_{1}\right)=0$. As $\phi^{\prime}\left(x_{0}\right)=0$ we apply Rolle's Theorem again for ϕ^{\prime} on $\left(x_{0}, c\right)$ and obtain $\phi^{\prime \prime}(c)=0$ for some $c \in\left(x_{0}, c\right) \subset\left(x_{0}, x\right)$ which gives $2 r=f^{\prime \prime}(c)$ and the proof ends.

[^0]Proof. (Clever) Fix x_{0}, x. Define

$$
\begin{equation*}
F(t):=f(x)-\left[f(t)+f^{\prime}(t)(x-t)\right] ; \quad G(t):=(x-t)^{2} . \tag{7}
\end{equation*}
$$

Application of Cauchy's MVT on $\left[x_{0}, x\right]$ (t is the variable here) gives

$$
\begin{equation*}
\frac{R(x)}{\left(x-x_{0}\right)^{2}}=\frac{F\left(x_{0}\right)-F(x)}{G\left(x_{0}\right)-G(x)}=\frac{F^{\prime}(c)}{G^{\prime}(c)}=\frac{f^{\prime \prime}(c)}{2} \tag{8}
\end{equation*}
$$

for some $c \in\left(x_{0}, x\right)$ and the proof ends.

- Example.

Example 6. Calculate the generic of Taylor expansion of e^{x} at $x_{0}=0$ with Lagrange form of remainder.

As $\left(e^{x}\right)^{(n)}=e^{x}$ for every n, we have

$$
\begin{equation*}
e^{x}=T_{n}(x)+R_{n}(x)=1+x+\cdots+\frac{x^{n}}{n!}+\frac{e^{c}}{(n+1)!} x^{n+1} . \tag{9}
\end{equation*}
$$

Note that as e^{x} is n-th differentiable at every x for every n, (9) holds for every $x \in \mathbb{R}$ and every $n \in \mathbb{N} \cup\{0\}$.

[^0]: 1. Consider $x^{n+1} D(x)$ where $D(x)$ is the Dirichlet function.
 2. If $x<x_{0}$ this is understood as $\left[x, x_{0}\right.$].
