MATH 117 FALL 2014 LECTURE 44 (Nov. 26, 2014)

Read: Bowman §4.G; **314** Differentiation §4.2.

- Taylor Expansion.
 - Let $n \in \mathbb{N} \cup \{0\}$, $x_0 \in \mathbb{R}$, $f: \mathbb{R} \mapsto \mathbb{R}$. Define
 - Taylor polynomial of f at x_0 of degree n:

$$T_n(x) := f(x_0) + f'(x_0) (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$
(1)

 \circ The "remainder" term:

$$R_n(x) := f(x) - T_n(x).$$
(2)

THEOREM 1. (TAYLOR EXPANSION WITH PEANO FORM OF REMAINDER) If $f^{(n)}(x_0)$ exists, then

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = 0.$$
 (3)

Remark 2. Note that the existence of $f^{(n)}(x_0)$ is necessary for $T_n(x)$ be defined so the hypothesis is already minimal.

Remark 3. In the case n = 0 Theorem 1 becomes $\lim_{x \to x_0} [f(x) - f(x_0)] = 0$ which is simply continuity of f at x_0 .

Exercise 1. Let $n \in \mathbb{N}$. Prove or disprove: If there is a polynomial P_n of degree n such that $\lim_{x\to 0} \frac{f(x) - P_n(x)}{x^n} = 0$, then $f^{(n)}(0)$ exists. (Hint:¹)

THEOREM 4. (TAYLOR EXPANSION WITH LAGRANGE FORM OF REMAINDER) If $f, f', ..., f^{(n)}$ are continuous on $[x_0, x]^2$ and $f^{(n)}$ is differentiable on (x_0, x) , then there is $c \in (x_0, x)$ such that

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$
(4)

Remark 5. Note that the assumption is also minimal already.

We give two proofs for the case n = 1 and leave the case of general n as exercises. We need to show there is $c \in (x_0, x)$ such that

$$f(x) = T_1(x) + \frac{f''(c)}{2} (x - x_0)^2.$$
(5)

Proof. (NORMAL) Fix x_0, x . Then there is $r \in \mathbb{R}$ such that $R_n(x) = r (x - x_0)^2$. Define

$$\phi(t) := f(t) - [T_1(t) + r(t - x_0)^2].$$
(6)

We check $\phi(x) = \phi(x_0) = 0$. Application of Rolle's Theorem yields the existence of $c_1 \in (x_0, x)$ such that $\phi'(c_1) = 0$. As $\phi'(x_0) = 0$ we apply Rolle's Theorem again for ϕ' on (x_0, c) and obtain $\phi''(c) = 0$ for some $c \in (x_0, c) \subset (x_0, x)$ which gives 2r = f''(c) and the proof ends. \Box

^{1.} Consider $x^{n+1}D(x)$ where D(x) is the Dirichlet function.

^{2.} If $x < x_0$ this is understood as $[x, x_0]$.

Proof. (CLEVER) Fix x_0, x . Define

$$F(t) := f(x) - [f(t) + f'(t)(x - t)]; \qquad G(t) := (x - t)^2.$$
(7)

Application of Cauchy's MVT on $[x_0, x]$ (t is the variable here) gives

$$\frac{R(x)}{(x-x_0)^2} = \frac{F(x_0) - F(x)}{G(x_0) - G(x)} = \frac{F'(c)}{G'(c)} = \frac{f''(c)}{2}$$
(8)

for some $c \in (x_0, x)$ and the proof ends.

• Example.

Example 6. Calculate the generic of Taylor expansion of e^x at $x_0 = 0$ with Lagrange form of remainder.

As $(e^x)^{(n)} = e^x$ for every n, we have

$$e^{x} = T_{n}(x) + R_{n}(x) = 1 + x + \dots + \frac{x^{n}}{n!} + \frac{e^{c}}{(n+1)!} x^{n+1}.$$
(9)

Note that as e^x is *n*-th differentiable at every x for every n, (9) holds for every $x \in \mathbb{R}$ and every $n \in \mathbb{N} \cup \{0\}$.