MATH 117 FALL 2014 LECTURE 43 (Nov. 24, 2014)

Read: Bowman §4.G; 314 Differentiation §4.2.

• Continuity and Differentiability as Approximations.

Example 1. Let f(x) be continuous at x_0 . Then there is exactly one number $s_0 \in \mathbb{R}$ such that $\lim_{x\to x_0} [f(x) - s_0] = 0$.

Exercise 1. Prove that $s_0 = f(x_0)$.

Exercise 2. Prove that $T_0(x) = f(x_0)$ is the best approximation of f(x) at x_0 by polynomials of degree zero, in the following sense:

Let $P_0(x)$ be any other zeroth degree polynomial, there holds

$$\lim_{x \to x_0} \frac{|f(x) - T_0(x)|}{|f(x) - P_0(x)|} = 0.$$
(1)

Exercise 3. Prove that

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \Longleftrightarrow \lim_{x \to x_0} \frac{|f(x)|}{|g(x)|} = 0.$$
(2)

Example 2. Let f(x) be differentiable at x_0 . Then there are exactly two numbers $s_0, s_1 \in \mathbb{R}$ such that $\lim_{x \to x_0} \frac{f(x) - [s_0 + s_1(x - x_0)]}{x - x_0} = 0.$

Exercise 4. Prove that $s_0 = f(x_0), s_1 = f'(x_0)$.

Exercise 5. Prove that $T_1(x) = f(x_0) + f'(x_0) (x - x_0)$ is the best approximation of f(x) at x_0 by polynomials of degree at most one, in the following sense:

Let $P_1(x)$ be any other polynomial of degree at most one, there holds

$$\lim_{x \to x_0} \frac{|f(x) - T_1(x)|}{|f(x) - P_1(x)|} = 0.$$
(3)

 $(Note:^1)$

- Generalization.
 - Approximation by polynomials of degree up to two.

Example 3. Let f(x) be twice differentiable at x_0 . Then there are exactly three numbers $s_0, s_1, s_2 \in \mathbb{R}$ such that

$$\lim_{x \to x_0} \frac{f(x) - [s_0 + s_1 (x - x_0) + s_2 (x - x_0)^2]}{(x - x_0)^2} = 0.$$
 (5)

We claim that $s_0 = f(x_0), s_1 = f'(x_0), s_2 = \frac{f''(x_0)}{2}$. To see this, first we show that these are the only possibile values.

As $\lim_{x \to x_0} (x - x_0)^2 = 0$, it is necessarily that $\lim_{x \to x_0} \{f(x) - [s_0 + s_1(x - x_0) + s_2(x - x_0)^2]\} = 0$ which implies $s_0 = f(x_0)$.

Next we have

$$\frac{f(x) - [f(x_0) + s_1 (x - x_0) + s_2 (x - x_0)^2]}{(x - x_0)^2} = \frac{\frac{f(x) - f(x_0)}{x - x_0} - [s_1 + s_2 (x - x_0)]}{(x - x_0)}.$$
(6)

1. The following proof is not correct for the case $P_1(x_0) = f(x_0)$ (Sorry!). By L'Hospital we have

$$\lim_{x \to x_0} \frac{f(x) - T_1(x)}{f(x) - P_1(x)} = \lim_{x \to x_0} \frac{[f(x) - T_1(x)]'}{[f(x) - P_1(x)]'} = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{f'(x) - P_1'(x_0)} = \frac{0}{f'(x_0) - P_1'(x_0)} = 0.$$
(4)

Taking limit $x \to x_0$ we see that the numerator tends to $f'(x_0) - s_1$ while the denominator tends to 0 and that (5) holds implies $s_1 = f'(x_0)$.

Now as $f''(x_0)$ exists, there is $\delta > 0$ such that f'(x) exists on $(x_0 - \delta, x_0 + \delta)$. Applying L'Hospital on this interval we obtain

$$\lim_{x \to x_0} \frac{f(x) - [f(x_0) + f'(x_0) (x - x_0) + s_2 (x - x_0)^2]}{(x - x_0)^2} \\
= \lim_{x \to x_0} \frac{\{f(x) - [f(x_0) + f'(x_0) (x - x_0) + s_2 (x - x_0)^2]\}'}{\{(x - x_0)^2\}'} \\
= \lim_{x \to x_0} \frac{\{f'(x) - [f'(x_0) + 2 s_2 (x - x_0)]\}}{2 (x - x_0)} \\
= \lim_{x \to x_0} \frac{\frac{f'(x) - f'(x_0)}{x - x_0} - 2 s_2}{2} \\
= \frac{f''(x_0) - 2 s_2}{2}.$$
(7)

We see that necessarily $s_2 = \frac{f''(x_0)}{2}$.

Exercise 6. Prove that (5) holds for $s_0 = f(x_0), s_1 = f'(x_0), s_2 = \frac{f''(x_0)}{2}$.

Exercise 7. Prove that $f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$ is the best approximation of f(x) at x_0 by polynomials of degree up to two.

• Taylor's Theorem.

THEOREM 4. Let f(x) be n-th differentiable at x_0 . Then there exist exactly n+1 real numbers $s_0, ..., s_n$ such that

$$\lim_{x \to x_0} \frac{f(x) - [s_0 + s_1 (x - x_0) + \dots + s_n (x - x_0)^n]}{(x - x_0)^n} = 0.$$
(8)

Furthermore $s_0 = f(x_0), s_1 = f'(x_0), \dots, s_n = \frac{f^{(n)}(x_0)}{n!}$.

Exercise 8. Prove Theorem 4.

DEFINITION 5. Let f(x) be n-th differentiable at x_0 . Define the Taylor polynomial of degree n of f(x) at x_0 as

$$T_n(x) := f(x_0) + f'(x_0) (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$
(9)

Define the "remainder" as $R_n(x) := f(x) - T_n(x)$.

Remark 6. Note that $T_n(x)$ depends on 1. $n, 2. f(x), 3. x_0$.

Remark 7. $R_n(x)$ describes how well f is approximated by $T_n(x)$.

THEOREM 8. (TAYLOR EXPANSION WITH LANGRANGE FORM OF REMAINDER) Let f(x) be (n+1)-th differentiable on (a,b) and $x_0 \in (a,b)$. Then there is $c \in (a,b)$ such that

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$
(10)

Proof. Next lecture.

Exercise 9. Detect the mistake in the following "proof" of Theorem 8 in the case n = 2: Apply MVT to f''(x) between x_0 and t, where t is arbitrary and between x_0, x , we have for some c,

$$f''(t) - f''(x_0) = f'''(c) (t - x_0).$$
⁽¹¹⁾

Integrating from x_0 to u with respect to t we have

$$f'(u) - f'(x_0) - f''(x_0) (u - x_0) = \frac{f'''(c)}{2} (u - x_0)^2.$$
 (12)

Integrating again from x_0 to x with respect to u we have

$$f(x) - f(x_0) - f'(x_0) (x - x_0) - \frac{f''(x_0)}{2} (x - x_0)^2 = \frac{f'''(c)}{6} (x - x_0)^3$$
(13)

and our proof ends.