MATH 117 FALL 2014 LECTURE 43 (Nov. 24, 2014)

Read: Bowman §4.G; 314 Differentiation §4.2.

e Continuity and Differentiability as Approximations.

Example 1. Let f(x) be continuous at zp. Then there is exactly one number sy € R such
that limg_, ., [f(x) — so] =0.
Exercise 1. Prove that so= f(zo).

Exercise 2. Prove that To(x) = f(zo) is the best approximation of f(z) at xo by polynomials of degree
zero, in the following sense:
Let Py(x) be any other zeroth degree polynomial, there holds
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f(@) 0+ lim |f(2)] 0. (2)

Exercise 3. Prove that
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Example 2. Let f(x) be differentiable at xyg. Then there are exactly two numbers s, s1 € R
f@) = [sotsi(z—z0)] _

T —xo

such that lim,,,,

Exercise 4. Prove that so= f(zo), s1= f'(zo)-

Exercise 5. Prove that Ti(z) = f(xo) + f'(z0) (x — x0) is the best approximation of f(z) at xg by
polynomials of degree at most one, in the following sense:
Let Pi(x) be any other polynomial of degree at most one, there holds
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e (Generalization.

o Approximation by polynomials of degree up to two.

Example 3. Let f(z) be twice differentiable at x9. Then there are exactly three
numbers sg, s1, S2 € R such that

_ _ 2
lim f(z)—[so+s1(x x0)2+ s2 (x — x0)7 _o. (5)
T—x0 (1' - xO)
We claim that so= f(x0), s1= f'(x0), $2 :@. To see this, first we show that these

are the only possibile values.

As limy 4, (z — 20)2 =0, it is necessarily that lim, ., { f(z) — [0 + 51 (x — x0) +
59 (x — x0)?]} = 0 which implies so= f (o).

Next we have

£(@) = [£(@0) + 51 (2 = o) +saw—w0)?] _ Tamgy o~ 51+ 2 (2 —20)] o

(x — x0)? (x — o)

1. The following proof is not correct for the case Pi(xo) = f(zo) (Sorry!). By L’Hospital we have
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Taking limit * — ¢ we see that the numerator tends to f’(z¢) — s1 while the
denominator tends to 0 and that (5) holds implies s1 = f'(x0).

Now as f”(x0) exists, there is 6 > 0 such that f'(z) exists on (zg — ¢, z¢ + 9).
Applying L’Hospital on this interval we obtain

f(x) = [f(2o) + f'(wo) (z — x0) + s2 (2 — 0)?]

lim
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_ i @) = [f (o) + f'(=0) (= — o) + 2 (x — 20)*]}
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T—To {(z —x0)?}
_ oy @) = [f(w0) + 252 (2 — w0)]}
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We see that necessarily so = @

Exercise 6. Prove that (5) holds for so= f(zo), s1= f'(z0), s2= f”(;(’).

Exercise 7. Prove that f(xo) + f'(x0) (x — zo) + w (x — z0)? is the best approximation of
f(x) at xo by polynomials of degree up to two.

Taylor’s Theorem.

THEOREM 4. Let f(x) be n-th differentiable at xo. Then there exist exactly n+1 real
numbers sg, ..., Sy, such that
i 4 (@) = [so+s1(z—20) + 450 (x—20)"] _ (8)

T—T0 (517 - x(])n

_ f(”)(xo) .

Furthermore so= f(xo),s1= f'(z0), .-, Sn -

Exercise 8. Prove Theorem 4.

DEFINITION 5. Let f(x) be n-th differentiable at xo. Define the Taylor polynomial of
degree n of f(x) at xo as

T, ()= flao) + £ao) (o — o) o L0 (g o)

Define the “remainder” as Ry (x):= f(x) — Ty ().
Remark 6. Note that T),(x) depends on 1. n, 2. f(x), 3. xo.
Remark 7. R,(x) describes how well f is approximated by T,(z).

THEOREM 8. (TAYLOR EXPANSION WITH LANGRANGE FORM OF REMAINDER) Let
f(z) be (n+1)-th differentiable on (a,b) and xo € (a,b). Then there is c € (a,b) such
that

f(n—l—l)(c)

Ry () :m

(x —x0)" L. (10)

Proof. Next lecture. ([l



Exercise 9. Detect the mistake in the following “proof” of Theorem 8 in the case n=2: Apply
MVT to f”(z) between zo and ¢, where ¢ is arbitrary and between zo, z, we have for some c,

JI(@) = [ (@o) = £ (c) (t — o). (11)
Integrating from zg to u with respect to t we have
£ = F(o) — (o) (u—20) = LD (u— )2 (12)
Integrating again from x¢ to x with respect to u we have
F(@)— Fao) — /(o) (@ — o) = L8 (2 = LD (g (13)

and our proof ends.
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