
Math 117 Fall 2014 Lecture 43 (Nov. 24, 2014)

Read: Bowman �4.G; 314 Di�erentiation �4.2.

� Continuity and Di�erentiability as Approximations.

Example 1. Let f(x) be continuous at x0. Then there is exactly one number s02R such
that limx!x0 [f(x)¡ s0] = 0.

Exercise 1. Prove that s0= f(x0).

Exercise 2. Prove that T0(x)= f(x0) is the best approximation of f(x) at x0 by polynomials of degree
zero, in the following sense:

Let P0(x) be any other zeroth degree polynomial, there holds

lim
x!x0

jf(x)¡T0(x)j
jf(x)¡P0(x)j

=0: (1)

Exercise 3. Prove that

lim
x!x0

f(x)
g(x)

= 0() lim
x!x0

jf(x)j
jg(x)j =0: (2)

Example 2. Let f(x) be di�erentiable at x0. Then there are exactly two numbers s0; s12R
such that limx!x0

f(x)¡ [s0+ s1(x¡x0)]
x¡x0

=0.

Exercise 4. Prove that s0= f(x0), s1= f 0(x0).

Exercise 5. Prove that T1(x) = f(x0) + f 0(x0) (x ¡ x0) is the best approximation of f(x) at x0 by
polynomials of degree at most one, in the following sense:

Let P1(x) be any other polynomial of degree at most one, there holds

lim
x!x0

jf(x)¡T1(x)j
jf(x)¡P1(x)j

=0: (3)

(Note:1 )

� Generalization.

� Approximation by polynomials of degree up to two.

Example 3. Let f(x) be twice di�erentiable at x0. Then there are exactly three
numbers s0; s1; s22R such that

lim
x!x0

f(x)¡ [s0+ s1 (x¡x0)+ s2 (x¡x0)2]
(x¡x0)2

=0: (5)

We claim that s0= f(x0); s1= f 0(x0); s2=
f 00(x0)

2
. To see this, �rst we show that these

are the only possibile values.
As limx!x0 (x¡ x0)2=0, it is necessarily that limx!x0 ff(x)¡ [s0+ s1 (x¡ x0)+

s2 (x¡x0)2]g=0 which implies s0= f(x0).
Next we have

f(x)¡ [f(x0)+ s1 (x¡ x0)+ s2 (x¡ x0)2]
(x¡x0)2

=

f(x)¡ f(x0)

x¡x0
¡ [s1+ s2 (x¡x0)]
(x¡x0)

: (6)

1. The following proof is not correct for the case P1(x0)= f(x0) (Sorry!). By L'Hospital we have

lim
x!x0

f(x)¡T1(x)
f(x)¡P1(x)

= lim
x!x0

[f(x)¡T1(x)]0
[f(x)¡P1(x)]0

= lim
x!x0

f 0(x)¡ f 0(x0)

f 0(x)¡P10(x0)
=

0

f 0(x0)¡P10(x0)
= 0: (4)



Taking limit x ! x0 we see that the numerator tends to f 0(x0) ¡ s1 while the
denominator tends to 0 and that (5) holds implies s1= f 0(x0).

Now as f 00(x0) exists, there is � > 0 such that f 0(x) exists on (x0 ¡ �; x0 + �).
Applying L'Hospital on this interval we obtain

lim
x!x0

f(x)¡ [f(x0)+ f 0(x0) (x¡ x0)+ s2 (x¡ x0)2]
(x¡x0)2

= lim
x!x0

ff(x)¡ [f(x0)+ f 0(x0) (x¡ x0)+ s2 (x¡ x0)2]g0
f(x¡x0)2g0

= lim
x!x0

ff 0(x)¡ [f 0(x0)+ 2 s2 (x¡ x0)]g
2 (x¡x0)

= lim
x!x0

f 0(x)¡ f 0(x0)

x¡x0
¡ 2 s2

2

=
f 00(x0)¡ 2 s2

2
: (7)

We see that necessarily s2=
f 00(x0)

2
.

Exercise 6. Prove that (5) holds for s0= f(x0); s1= f 0(x0); s2=
f 00(x0)

2
.

Exercise 7. Prove that f(x0) + f 0(x0) (x ¡ x0) +
f 00(x0)

2
(x ¡ x0)

2 is the best approximation of
f(x) at x0 by polynomials of degree up to two.

� Taylor's Theorem.

Theorem 4. Let f(x) be n-th di�erentiable at x0. Then there exist exactly n+1 real
numbers s0; :::; sn such that

lim
x!x0

f(x)¡ [s0+ s1 (x¡ x0)+ ���+ sn (x¡ x0)n]
(x¡ x0)n

=0: (8)

Furthermore s0= f(x0); s1= f 0(x0); :::; sn=
f(n)(x0)

n!
.

Exercise 8. Prove Theorem 4.

Definition 5. Let f(x) be n-th di�erentiable at x0. De�ne the Taylor polynomial of
degree n of f(x) at x0 as

Tn(x) := f(x0)+ f 0(x0) (x¡ x0)+ ���+
f (n)(x0)

n!
(x¡x0)n: (9)

De�ne the �remainder� as Rn(x) := f(x)¡Tn(x).

Remark 6. Note that Tn(x) depends on 1. n, 2. f(x), 3. x0.

Remark 7. Rn(x) describes how well f is approximated by Tn(x).

Theorem 8. (Taylor Expansion with Langrange Form of Remainder) Let
f(x) be (n+1)-th di�erentiable on (a; b) and x02 (a; b). Then there is c2 (a; b) such
that

Rn(x)=
f (n+1)(c)

(n+1)!
(x¡x0)n+1: (10)

Proof. Next lecture. �



Exercise 9. Detect the mistake in the following �proof� of Theorem 8 in the case n=2: Apply
MVT to f 00(x) between x0 and t, where t is arbitrary and between x0; x, we have for some c,

f 00(t)¡ f 00(x0)= f 000(c) (t¡x0): (11)

Integrating from x0 to u with respect to t we have

f 0(u)¡ f 0(x0)¡ f 00(x0) (u¡x0)=
f 000(c)
2

(u¡x0)2: (12)

Integrating again from x0 to x with respect to u we have

f(x)¡ f(x0)¡ f 0(x0) (x¡x0)¡
f 00(x0)

2
(x¡x0)2=

f 000(c)

6
(x¡x0)3 (13)

and our proof ends.
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