Math 117 Fall 2014 Lecture 43 (Nov. 24, 2014)

Read: Bowman §4.G; 314 Differentiation §4.2.

- Continuity and Differentiability as Approximations.

Example 1. Let $f(x)$ be continuous at x_{0}. Then there is exactly one number $s_{0} \in \mathbb{R}$ such that $\lim _{x \rightarrow x_{0}}\left[f(x)-s_{0}\right]=0$.

Exercise 1. Prove that $s_{0}=f\left(x_{0}\right)$.
Exercise 2. Prove that $T_{0}(x)=f\left(x_{0}\right)$ is the best approximation of $f(x)$ at x_{0} by polynomials of degree zero, in the following sense:

Let $P_{0}(x)$ be any other zeroth degree polynomial, there holds

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{\left|f(x)-T_{0}(x)\right|}{\left|f(x)-P_{0}(x)\right|}=0 . \tag{1}
\end{equation*}
$$

Exercise 3. Prove that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=0 \Longleftrightarrow \lim _{x \rightarrow x_{0}} \frac{|f(x)|}{|g(x)|}=0 . \tag{2}
\end{equation*}
$$

Example 2. Let $f(x)$ be differentiable at x_{0}. Then there are exactly two numbers $s_{0}, s_{1} \in \mathbb{R}$ such that $\lim _{x \rightarrow x_{0}} \frac{f(x)-\left[s_{0}+s_{1}\left(x-x_{0}\right)\right]}{x-x_{0}}=0$.

Exercise 4. Prove that $s_{0}=f\left(x_{0}\right), s_{1}=f^{\prime}\left(x_{0}\right)$.
Exercise 5. Prove that $T_{1}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ is the best approximation of $f(x)$ at x_{0} by polynomials of degree at most one, in the following sense:

Let $P_{1}(x)$ be any other polynomial of degree at most one, there holds

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{\left|f(x)-T_{1}(x)\right|}{\left|f(x)-P_{1}(x)\right|}=0 . \tag{3}
\end{equation*}
$$

(Note: ${ }^{1}$)

- Generalization.
- Approximation by polynomials of degree up to two.

Example 3. Let $f(x)$ be twice differentiable at x_{0}. Then there are exactly three numbers $s_{0}, s_{1}, s_{2} \in \mathbb{R}$ such that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-\left[s_{0}+s_{1}\left(x-x_{0}\right)+s_{2}\left(x-x_{0}\right)^{2}\right]}{\left(x-x_{0}\right)^{2}}=0 . \tag{5}
\end{equation*}
$$

We claim that $s_{0}=f\left(x_{0}\right), s_{1}=f^{\prime}\left(x_{0}\right), s_{2}=\frac{f^{\prime \prime}\left(x_{0}\right)}{2}$. To see this, first we show that these are the only possibile values.

As $\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2}=0$, it is necessarily that $\lim _{x \rightarrow x_{0}}\left\{f(x)-\left[s_{0}+s_{1}\left(x-x_{0}\right)+\right.\right.$ $\left.\left.s_{2}\left(x-x_{0}\right)^{2}\right]\right\}=0$ which implies $s_{0}=f\left(x_{0}\right)$.

Next we have

$$
\begin{equation*}
\frac{f(x)-\left[f\left(x_{0}\right)+s_{1}\left(x-x_{0}\right)+s_{2}\left(x-x_{0}\right)^{2}\right]}{\left(x-x_{0}\right)^{2}}=\frac{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-\left[s_{1}+s_{2}\left(x-x_{0}\right)\right]}{\left(x-x_{0}\right)} . \tag{6}
\end{equation*}
$$

1. The following proof is not correct for the case $P_{1}\left(x_{0}\right)=f\left(x_{0}\right)$ (Sorry!). By L'Hospital we have

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-T_{1}(x)}{f(x)-P_{1}(x)}=\lim _{x \rightarrow x_{0}} \frac{\left[f(x)-T_{1}(x)\right]^{\prime}}{\left[f(x)-P_{1}(x)\right]^{\prime}}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)-f^{\prime}\left(x_{0}\right)}{f^{\prime}(x)-P_{1}^{\prime}\left(x_{0}\right)}=\frac{0}{f^{\prime}\left(x_{0}\right)-P_{1}^{\prime}\left(x_{0}\right)}=0 \tag{4}
\end{equation*}
$$

Taking limit $x \rightarrow x_{0}$ we see that the numerator tends to $f^{\prime}\left(x_{0}\right)-s_{1}$ while the denominator tends to 0 and that (5) holds implies $s_{1}=f^{\prime}\left(x_{0}\right)$.

Now as $f^{\prime \prime}\left(x_{0}\right)$ exists, there is $\delta>0$ such that $f^{\prime}(x)$ exists on $\left(x_{0}-\delta, x_{0}+\delta\right)$. Applying L'Hospital on this interval we obtain

$$
\begin{align*}
& \lim _{x \rightarrow x_{0}} \frac{f(x)-\left[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+s_{2}\left(x-x_{0}\right)^{2}\right]}{\left(x-x_{0}\right)^{2}} \\
= & \lim _{x \rightarrow x_{0}} \frac{\left\{f(x)-\left[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+s_{2}\left(x-x_{0}\right)^{2}\right]\right\}^{\prime}}{\left\{\left(x-x_{0}\right)^{2}\right\}^{\prime}} \\
= & \lim _{x \rightarrow x_{0}} \frac{\left\{f^{\prime}(x)-\left[f^{\prime}\left(x_{0}\right)+2 s_{2}\left(x-x_{0}\right)\right]\right\}}{2\left(x-x_{0}\right)} \\
= & \lim _{x \rightarrow x_{0}} \frac{\frac{f^{\prime}(x)-f^{\prime}\left(x_{0}\right)}{x-x_{0}}-2 s_{2}}{2} \\
= & \frac{f^{\prime \prime}\left(x_{0}\right)-2 s_{2}}{2} . \tag{7}
\end{align*}
$$

We see that necessarily $s_{2}=\frac{f^{\prime \prime}\left(x_{0}\right)}{2}$.
Exercise 6. Prove that (5) holds for $s_{0}=f\left(x_{0}\right), s_{1}=f^{\prime}\left(x_{0}\right), s_{2}=\frac{f^{\prime \prime}\left(x_{0}\right)}{2}$.
Exercise 7. Prove that $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}$ is the best approximation of $f(x)$ at x_{0} by polynomials of degree up to two.

- Taylor's Theorem.

Theorem 4. Let $f(x)$ be n-th differentiable at x_{0}. Then there exist exactly $n+1$ real numbers s_{0}, \ldots, s_{n} such that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-\left[s_{0}+s_{1}\left(x-x_{0}\right)+\cdots+s_{n}\left(x-x_{0}\right)^{n}\right]}{\left(x-x_{0}\right)^{n}}=0 . \tag{8}
\end{equation*}
$$

Furthermore $s_{0}=f\left(x_{0}\right), s_{1}=f^{\prime}\left(x_{0}\right), \ldots, s_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}$.
Exercise 8. Prove Theorem 4.
Definition 5. Let $f(x)$ be n-th differentiable at x_{0}. Define the Taylor polynomial of degree n of $f(x)$ at x_{0} as

$$
\begin{equation*}
T_{n}(x):=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} . \tag{9}
\end{equation*}
$$

Define the "remainder" as $R_{n}(x):=f(x)-T_{n}(x)$.
Remark 6. Note that $T_{n}(x)$ depends on 1. $n, 2 . f(x), 3 . x_{0}$.
Remark 7. $R_{n}(x)$ describes how well f is approximated by $T_{n}(x)$.
Theorem 8. (Taylor Expansion with Langrange Form of Remainder) Let $f(x)$ be $(n+1)$-th differentiable on (a, b) and $x_{0} \in(a, b)$. Then there is $c \in(a, b)$ such that

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} . \tag{10}
\end{equation*}
$$

Proof. Next lecture.

Exercise 9. Detect the mistake in the following "proof" of Theorem 8 in the case $n=2$: Apply MVT to $f^{\prime \prime}(x)$ between x_{0} and t, where t is arbitrary and between x_{0}, x, we have for some c,

$$
\begin{equation*}
f^{\prime \prime}(t)-f^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime \prime}(c)\left(t-x_{0}\right) . \tag{11}
\end{equation*}
$$

Integrating from x_{0} to u with respect to t we have

$$
\begin{equation*}
f^{\prime}(u)-f^{\prime}\left(x_{0}\right)-f^{\prime \prime}\left(x_{0}\right)\left(u-x_{0}\right)=\frac{f^{\prime \prime \prime}(c)}{2}\left(u-x_{0}\right)^{2} . \tag{12}
\end{equation*}
$$

Integrating again from x_{0} to x with respect to u we have

$$
\begin{equation*}
f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)-\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}=\frac{f^{\prime \prime \prime}(c)}{6}\left(x-x_{0}\right)^{3} \tag{13}
\end{equation*}
$$

and our proof ends.

