Math 117 Fall 2014 Midterm Exam 3 Solutions

Nov. 21, 2014 10Am - 10:50am. Total $20+2$ Pts
NAME:
ID \#:

- There are five questions.
- Please write clearly and show enough work.

Question 1. (5 pts) Prove by $\varepsilon-\delta: f(x):=\left\{\begin{array}{ll}2 & x>0 \\ 1 & x \leqslant 0\end{array}\right.$ is continuous at every $a \neq 0$ but discontinuous at 0 .

Proof. Let $a \neq 0$ be arbitrary. Let $\varepsilon>0$ be arbitrary. Take $\delta=|a|$. Then for every $|x-a|<\delta$, we have either both $x, a>0$ or both $x, a<0$. Consequently

$$
\begin{equation*}
|f(x)-f(a)|=0<\varepsilon \tag{1}
\end{equation*}
$$

and continuity follows.
At 0 , let $\delta>0$ be arbitrary. Take $x \in(0, \delta)$. Then we have

$$
\begin{equation*}
|f(x)-f(0)|=1 \tag{2}
\end{equation*}
$$

and discontinuity follows.

Question 2. (5 pts) Let $f(x):=\left\{\begin{array}{ll}x+x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Prove that f is differentiable everywhere on \mathbb{R} and calculate $f^{\prime}(x)$.

Proof. Since $x, x^{2}, \sin x$ are differentiable everywhere and $1 / x$ is differentiable everywhere except at 0 , we have $x+x^{2} \sin \frac{1}{x}$ differentiable at every $x \neq 0$. We further calculate for $x \neq 0$,

$$
\begin{equation*}
f^{\prime}(x)=1+\left(x^{2} \sin \frac{1}{x}\right)^{\prime}=1+2 x \sin \frac{1}{x}-\cos \frac{1}{x} . \tag{3}
\end{equation*}
$$

At 0, we have

$$
\begin{equation*}
\frac{f(x)-f(0)}{x-0}=1+x \sin \frac{1}{x} . \tag{4}
\end{equation*}
$$

Following Squeeze Theorem we have $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$ and consequently

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=1 \tag{5}
\end{equation*}
$$

and there follows $f^{\prime}(0)=1$.
Summarize:

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
1+2 x \sin \frac{1}{x}-\cos \frac{1}{x} & x \neq 0 \tag{6}\\
1 & x=0
\end{array} .\right.
$$

Thus ends the solution.

Question 3. ($5 \mathbf{p t s}$) Prove or disprove: $\sum_{n=1}^{\infty} \tan \frac{1}{n^{2}}$ converges. (You can use the convergence/divergence of $\sum_{n=1}^{\infty} \frac{1}{n^{a}}$ without justification)

Solution. It converges. Since for every $x \in(0,1), \sin x<x$ and $\cos x>\cos 1$, we have

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad\left|\tan \frac{1}{n^{2}}\right|=\frac{\sin \left(1 / n^{2}\right)}{\cos \left(1 / n^{2}\right)}<\frac{1 / n^{2}}{\cos 1}=\frac{1}{\cos 1} \frac{1}{n^{2}} \tag{7}
\end{equation*}
$$

As $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, so does $\frac{1}{\cos 1} \frac{1}{n^{2}}$ and our conclusion follows from Comparison.

Question 4. (5 pts) Prove that there are exactly two solutions for the equation $x^{2}+1=2 \cos x$.

Proof. Let $f(x):=x^{2}+1-2 \cos x$. Clearly f is continuous and differentiable on \mathbb{R}.

We calculate $f(-1)=f(1)=2-2 \cos 1>0, f(0)=1-2=-1<0$. Application of IVT on $[-1,0]$ and $[0,1]$ yields two solutions c_{1}, c_{2} such that

$$
\begin{equation*}
c_{1} \in(-1,0), \quad c_{2} \in(0,1) \tag{8}
\end{equation*}
$$

To see that they are the only solutions, first notice that when $|x|>1$, we have

$$
\begin{equation*}
f(x)>2-2 \cos x>0 \tag{9}
\end{equation*}
$$

therefore no solution can be outside $(-1,1)$.
Next we prove that f is strictly increasing on $(0,1)$ and strictly decreasing on $(-1,0)$.

To do this we calculate

$$
\begin{equation*}
f^{\prime}(x)=2(x+\sin x) . \tag{10}
\end{equation*}
$$

As $\sin x<0$ for $x \in(-1,0)$ and $\sin x>0$ for $x \in(0,1)$ we see that $f^{\prime}(x)<0$ on $(-1,0)$ and >0 on $(0,1)$.

Thus $f(x)=0$ has exactly one solution in $(0,1)$ and one solution in $(-1,0)$. As $f(0) \neq 0$, we finished our proof.

Question 5. (Extra 2 pts) Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ such that f is differentiable everywhere, $f^{\prime}(0)>0$, but there is no $\delta>0$ such that f is increasing on $(-\delta, \delta)$. Justify.

Solution. We consider

$$
\begin{equation*}
f(x)=k x+x^{2} \sin \left(\frac{1}{x}\right) \tag{11}
\end{equation*}
$$

We have

$$
f^{\prime}(x)= \begin{cases}k-\cos \left(\frac{1}{x}\right)+2 x \sin \left(\frac{1}{x}\right) & x \neq 0 \tag{12}\\ k & x=0\end{cases}
$$

Thus $f^{\prime}(0)>0$ as long as $k>0$.
We prove
If $k \leqslant 1$ then f is not increasing on any (a, b) containing 0 ; On the other hand, if $k>1$ then there is a small interval containing 0 such that f is increasing.

- $k \leqslant 1$. All we need to do is to show that there are $a_{n}<b_{n}, a_{n}, b_{n} \longrightarrow 0$ such that $f^{\prime}(x)<0$ for $x \in\left(a_{n}, b_{n}\right)$.

We have

$$
\begin{equation*}
f^{\prime}(x)=k-\sqrt{1+4 x^{2}} \cos \left(\frac{1}{x}+\theta(x)\right) \tag{13}
\end{equation*}
$$

for $\theta(x)$ satisfying $\tan (\theta)=2 x$. Thus $\theta(x)$ is differentiable and $\theta(x) \longrightarrow 0$ as $x \longrightarrow 0$. As $\frac{1}{x} \longrightarrow \infty$ when $x \longrightarrow \infty$, there are $x_{n} \longrightarrow 0$ such that

Now as

$$
\begin{equation*}
\frac{1}{x_{n}}+\theta\left(x_{n}\right)=2 n \pi \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime}\left(x_{n}\right)=k-\sqrt{1+4 x_{n}^{2}}<0 \tag{15}
\end{equation*}
$$

there is $\delta_{n}>0$ such that

$$
\begin{equation*}
f^{\prime}(x)<0 \quad \forall x \in\left(x_{n}-\delta_{n}, x_{n}+\delta_{n}\right) \tag{16}
\end{equation*}
$$

thanks to the continuity of $f^{\prime}(x)$ for $x>0$.

- $k>1$. In this case set $\delta:=\frac{\sqrt{k-1}}{2}$. Then we have, for all $x \in(-\delta, \delta)$,

$$
\begin{equation*}
f^{\prime}(x) \geqslant k-\sqrt{1+4 x^{2}} \geqslant k-\left(1+2 x^{2}\right) \geqslant k-\left(1+2 \delta^{2}\right)=\frac{k-1}{2}>0 . \tag{17}
\end{equation*}
$$

Therefore f is increasing in $(-\delta, \delta)$.

