Math 117 Fall 2014 Midterm Exam 3

Nov. 21, 2014 10
am - 10:50 am. Total 20+2 $\rm Pts$

NAME:

ID⋕:

- There are five questions.
- Please write clearly and show enough work.

Question 1. (5 pts) Prove by $\varepsilon - \delta$: $f(x) := \begin{cases} 2 & x > 0 \\ 1 & x \leq 0 \end{cases}$ is continuous at every $a \neq 0$ but discontinuous at 0.

Question 2. (5 pts) Let $f(x) := \begin{cases} x + x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Prove that f is differentiable everywhere on \mathbb{R} and calculate f'(x).

Question 3. (5 pts) Prove or disprove: $\sum_{n=1}^{\infty} \tan \frac{1}{n^2}$ converges. (You can use the convergence/divergence of $\sum_{n=1}^{\infty} \frac{1}{n^a}$ without justification)

Question 4. (5 pts) Prove that there are exactly two solutions for the equation $x^2 + 1 = 2 \cos x$.

Question 5. (Extra 2 pts) Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ such that f is differentiable everywhere, f'(0) > 0, but there is no $\delta > 0$ such that f is increasing on $(-\delta, \delta)$. Justify. This page is blank.