MATH 117 FALL 2014 HOMEWORK 9

DUE THURSDAY NOV. 27 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Prove by definition that $f(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$ is integrable on [0, 1].

QUESTION 2. (5 PTS) Let $f:[a,b] \mapsto \mathbb{R}$ be integrable. Prove that |f(x)| is also integrable on [a,b] and furthermore $\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \leq \int_{a}^{b} |f(x)| \, \mathrm{d}x$.

QUESTION 3. (5 PTS) Let the "Naive Integral" of $f:[a,b] \mapsto \mathbb{R}$ be defined as

$$\mathcal{NI}(f, [a, b]) := \lim_{n \to \infty} \frac{b - a}{n} \sum_{k=1}^{n} f(x_k)$$
(1)

where $x_k := a + \frac{k}{n} (b - a)$. Find real numbers a < c < b and a function $f: [a, b] \mapsto \mathbb{R}$ such that $\mathcal{NI}(f, [a, b]) \neq \mathcal{NI}(f, [a, c]) + \mathcal{NI}(f, [c, b])$. Justify your example and explain why we did not define integrals using (1).

QUESTION 4. (5 PTS) Let $a \in \mathbb{R}$. Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ be such that

- *i.* f, g are differentiable on $\mathbb{R} \{a\}$;
- *ii.* $\lim_{x\to a} f(x) = +\infty$; $\lim_{x\to a} g(x) = +\infty$;
- *iii.* $\lim_{x \to a} \frac{f'(x)}{g'(x)} = +\infty.$

Prove that $\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$.