Read:

- Infinite Series
 - \circ Definition.
 - Proving convergence: Definition; Cauchy; Monotone + bound;
 - If $\sum_{n=1}^{\infty} a_n$ converges then $\lim_{n\to\infty} a_n = 0$;
 - Comparison:

$$- |a_n| \leq b_n, \sum_{n=1}^{\infty} b_n \text{ converges} \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ converges};$$

$$- a_n \geq b_n \geq 0, \sum_{n=1}^{\infty} b_n \text{ diverges} \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ diverges}.$$

- $\sum_{n=1}^{\infty} r^n$ converges if and only if |r| < 1;
- $\sum_{n=1}^{\infty} \frac{1}{n^a}$ converges if and only if a > 1;

-
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 converges.

- Continuity
 - $\circ \quad \text{Definition; } \varepsilon\text{-}\delta.$
 - $\circ \quad \text{Continuity of } f \pm g, c f, f g, f / g, g \circ f, \text{inverse function.}$
 - \circ f continuous on [a, b] then f reaches maximum and minimum.
 - IVT.
- Differentiability/differentiation
 - \circ Definition.
 - Differentiability and derivatives of $f \pm g, cg, fg, f/g, g \circ f$, inverse function.
 - \circ MVT;
 - Use derivative to determine monotonicity and find maximizers/minimizers.
- Examples

Example 1. Prove that $\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$ is convergent.

Solution. We prove $\sin \frac{1}{n^2} \leq \frac{1}{n^2}$ for all $n \in \mathbb{N}$ and convergence follows. It suffices to prove $\sin x \leq x$ for all x > 0. Let $f(x) := x - \sin x$. We have $f'(x) = 1 - \cos x \geq 0$ for all x and therefore f(x) is increasing. Now as f(0) = 0 we see that for every x > 0, $f(x) \geq f(0) = 0$.

Exercise 1. Prove that $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ is divergent.

Example 2. Let $f:[a,b] \mapsto \mathbb{R}$ be continuous and f(x) > 0 for every $x \in [a,b]$. Prove there is $\delta > 0$ such that $\forall x \in [a,b], f(x) > \delta$.

Proof. As f is continuous on [a, b] there is a minimizer $x_0 \in [a, b]$, that is

$$\forall x \in [a, b], \qquad f(x) \ge f(x_0). \tag{1}$$

By assumption $f(x_0) > 0$. Taking $\delta = f(x_0)/2$ ends the proof.

Example 3. Prove that $f(x) := \tan x - x$ is invertible on $(-\pi/2, \pi/2)$.

Solution.

• Onto.

Let $y \in \mathbb{R}$ be arbitrary. As $\lim_{x \to \pi/2} f(x) = +\infty$ there is $x_1 \in (-\pi/2, \pi/2)$ such that $f(x_1) > y$. Similarly there is $x_2 \in (-\pi/2, \pi/2)$ such that $f(x_2) < y$. By IVT there is x between x_1, x_2 such that f(x) = y.

 $\circ \quad \text{One-to-one.}$

We prove f is strictly increasing. Let $x_1 < x_2$ be arbitrary from $(-\pi/2, \pi/2)$. There are three cases.

 $- \quad x_1, x_2 \ge 0.$

By MVT we have

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) = \frac{1}{\cos^2 c} - 1.$$
(2)

for some $c \in (x_1, x_2)$. As in particular c > 0 we have f'(c) > 0 and consequently $f(x_2) > f(x_1)$.

$$- x_1, x_2 \leqslant 0.$$

Similarly we have $f(x_2) > f(x_1)$ in this case too.

$$- x_1 < 0 < x_2$$

From the above two cases we see that $f(x_1) < 0 < f(x_2)$.