Math 117 Fall 2014 Lecture 42 (Nov. 20, 2014)

Read:

- Infinite Series
- Definition.
- Proving convergence: Definition; Cauchy; Monotone + bound;
- If $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim _{n \rightarrow \infty} a_{n}=0$;
- Comparison:
- $\left|a_{n}\right| \leqslant b_{n}, \sum_{n=1}^{\infty} b_{n}$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
$-a_{n} \geqslant b_{n} \geqslant 0, \sum_{n=1}^{\infty} b_{n}$ diverges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ diverges.
- Typical series.
- $\quad \sum_{n=1}^{\infty} r^{n}$ converges if and only if $|r|<1$;
- $\quad \sum_{n=1}^{\infty} \frac{1}{n^{a}}$ converges if and only if $a>1$;
$-\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges.
- Continuity
- Definition; $\varepsilon-\delta$.
- Continuity of $f \pm g, c f, f g, f / g, g \circ f$, inverse function.
- f continuous on $[a, b]$ then f reaches maximum and minimum.
- IVT.
- Differentiability/differentiation
- Definition.
- Differentiability and derivatives of $f \pm g, c g, f g, f / g, g \circ f$, inverse function.
- MVT;
- Use derivative to determine monotonicity and find maximizers/minimizers.
- Examples

Example 1. Prove that $\sum_{n=1}^{\infty} \sin \frac{1}{n^{2}}$ is convergent.
Solution. We prove $\sin \frac{1}{n^{2}} \leqslant \frac{1}{n^{2}}$ for all $n \in \mathbb{N}$ and convergence follows. It suffices to prove $\sin x \leqslant x$ for all $x>0$. Let $f(x):=x-\sin x$. We have $f^{\prime}(x)=1-\cos x \geqslant 0$ for all x and therefore $f(x)$ is increasing. Now as $f(0)=0$ we see that for every $x>0, f(x) \geqslant f(0)=0$.

Exercise 1. Prove that $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ is divergent.
Example 2. Let $f:[a, b] \mapsto \mathbb{R}$ be continuous and $f(x)>0$ for every $x \in[a, b]$. Prove there is $\delta>0$ such that $\forall x \in[a, b], f(x)>\delta$.

Proof. As f is continuous on $[a, b]$ there is a minimizer $x_{0} \in[a, b]$, that is

$$
\begin{equation*}
\forall x \in[a, b], \quad f(x) \geqslant f\left(x_{0}\right) . \tag{1}
\end{equation*}
$$

By assumption $f\left(x_{0}\right)>0$. Taking $\delta=f\left(x_{0}\right) / 2$ ends the proof.
Example 3. Prove that $f(x):=\tan x-x$ is invertible on $(-\pi / 2, \pi / 2)$.

Solution.

- Onto.

Let $y \in \mathbb{R}$ be arbitrary. As $\lim _{x \rightarrow \pi / 2} f(x)=+\infty$ there is $x_{1} \in(-\pi / 2, \pi / 2)$ such that $f\left(x_{1}\right)>y$. Similarly there is $x_{2} \in(-\pi / 2, \pi / 2)$ such that $f\left(x_{2}\right)<y$. By IVT there is x between x_{1}, x_{2} such that $f(x)=y$.

- One-to-one.

We prove f is strictly increasing. Let $x_{1}<x_{2}$ be arbitrary from $(-\pi / 2, \pi / 2)$. There are three cases.

- $\quad x_{1}, x_{2} \geqslant 0$.

By MVT we have

$$
\begin{equation*}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(c)=\frac{1}{\cos ^{2} c}-1 . \tag{2}
\end{equation*}
$$

for some $c \in\left(x_{1}, x_{2}\right)$. As in particular $c>0$ we have $f^{\prime}(c)>0$ and consequently $f\left(x_{2}\right)>f\left(x_{1}\right)$.

- $\quad x_{1}, x_{2} \leqslant 0$.

Similarly we have $f\left(x_{2}\right)>f\left(x_{1}\right)$ in this case too.

- $\quad x_{1}<0<x_{2}$.

From the above two cases we see that $f\left(x_{1}\right)<0<f\left(x_{2}\right)$.

