
Math 117 Fall 2014 Lecture 41 (Nov. 19, 2014)

Read: 314 Di�erentiation �4.1.

� Higher Order Derivatives.

Definition 1. Let f be di�erentiable on (a; b). If f 0(x) is di�erentiable at some c2 (a; b),
we say f is twice di�erentiable at c and called (f 0)0(c) its second order derivative at c. We
denote it by f 00(c).

Notation 2. We denote f (1)= f 0; f (2)= f 00.

Definition 3. Let f be (n ¡ 1)-th di�erentiable on (a; b). If f (n¡1)(x) is di�erentiable
at c 2 (a; b), we say f is n-th di�erentiable at c and denote its n-th derivative at c as
f (n)(c) :=

¡
f (n¡1)

�0(c).
Notation 4. For n6 3 we usually write f 0; f 00; f 000 for f (1); f (2); f (3).

Proposition 5. Let f be k-th di�erentiable at c. Then for every m; n2N with m+ n= k,
we have

f (k)(c)=
¡
f (m)

�
(n)(c): (1)

Proof. We prove by induction.

� Base. k=2. In this case m=n=1 and the conclusion follows from De�nition 1.

� Induction. Assume the conclusion holds for k= l. Let k= l+1 and m;n2N be such
that m+n= l+1.

¡ Case 1. n=1. In this case the conclusion follows from De�nition 3.

¡ Case 2. n> 1. We have n¡ 12N and by induction hypothesis

f (k)(c)=
¡
f (k¡1)

�0(c)= ¡¡
f (m)

�
(n¡1)�0(c)= ¡

f (m)
�
(n)(c) (2)

thanks to De�nition 3. �

Exercise 1. Let f ; g be n-th di�erentiable at c. Prove

� f � g is n-th di�erentiable at c with

(f � g)(n)(c)= f (n)(c)� g(n)(c): (3)

� If a2R then a f is n-th di�erentiable at c with

(a f )(n)(c)= a f (n)(c): (4)

� f g is n-th di�erentiable at c;

� If g(c)=/ 0, f
g
is n-th di�erentiable at c.



� Calculation of higher order derivatives.

� Calculating a particular higher order derivative is simple.

Example 6. Calculate (arctanx)000.

Solution. We have

(arctanx)000 = [(arctanx)0]00

=
�

1
1+x2

�00
=

�
¡ 2x
(1+x2)2

�0
= ¡ 2

(1+x2)2
+2 4x2

(1+x2)3

= 6x2¡ 2
(1+x2)3

: (5)

� Things become subtle when we need to calculate derivative of a generic order n (or
when we need to calculate a very high order of derivative).

Example 7. Calculate (cosx)(n).
Solution. We observe

(cosx)(n)=

8>><>>:
¡sinx n=4 k+1
¡cosx n=4 k+2
sinx n=4 k+3
cosx n=4 k+4

= cos
�
x¡ n�

2

�
: (6)

The proof (through induction) of this formula is left as exercise.

Exercise 2. Calculate (xk)(n) for n; k 2N. Justify.

Exercise 3. Calculate (e4x)(n) for all n2N. Justify.

Exercise 4. Calculate (ln(1+ x))(n) for all n2N. Justify.

Example 8. Calculate (arctanx)(n) at x=0.

Solution.

¡ Method 1. Let y(x) := arctanx. We claim

y(n)(x)= (n¡ 1)! cosny sin
�
n
�
y+ �

2

��
: (7)

Then we have y(n)(0)= (n¡ 1)! sin
¡
¡n�

2

�
. We prove (7) by induction.

� Base. We have

y 0(x)= 1
1+x2

= cos2y=(1¡ 1)! cos1y sin
�
1 �

�
y+ �

2

��
: (8)



� Induction. Assuming (7), we calculate

y(n+1)(x) = (n¡ 1)!
h
cosny sin

�
n
�
y+ �

2

��i0
= (n ¡ 1)!

h
n cosn¡1y (¡sin y) y 0 sin

�
n

�
y + �

2

��
+

cosny n cos
�
n
�
y+ �

2

��
y 0
i

= n! cosn+1y
h
¡sin y sin

�
n
�
y + �

2

��
+ cos y cos

�
n
�
y +

�
2

��i
= n! cosn+1y

h
cos

�
y + �

2

�
sin

�
n

�
y + �

2

��
+ sin

�
y +

�
2

�
cos

�
n
�
y+ �

2

��i
= n! cosn+1y sin

h
(n+1)

�
y+ �

2

�i
: (9)

¡ Method 2.

Theorem 9. (Leibniz formula) We have

(u v)(n)(c)=
X
k=0

n �
n
k

�
u(k)(c) v(n¡k)(c) (10)

if all derivatives involved exist.

Exercise 5. Prove this formula through induction.

Applying Leibniz formula to

(1+x2) y 0=1 (11)

we have X
k=0

n¡1 �
n¡ 1
k

�
(1+x2)(k) y(n¡k)=0 (12)

which gives

y(n)=¡
X
k=1

n¡1 �
n¡ 1
k

�
(1+x2)(k) y(n¡k): (13)

Exercise 6. Calculate (1+ x2)(k) for a generic k 2N.

Exercise 7. Complete the calculation of (arctan x)(n) at x=0 using Method 2.

Exercise 8. Calculate (arcsin x)(n)(0) for n2N. Justify.

Exercise 9. Calculate (tan x)(n) for n=1; 2; :::; 8.

Exercise 10. Let x(t) := t¡ sin t; y(t) := 1¡ cos t.

a) Prove that x(t) 7! y(t) de�nes a function y= y(x).

b) Calculate y 00(0).
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