Math 117 Fall 2014 Lecture 41 (Nov. 19, 2014)

Read: 314 Differentiation §4.1.

- Higher Order Derivatives.

Definition 1. Let f be differentiable on (a, b). If $f^{\prime}(x)$ is differentiable at some $c \in(a, b)$, we say f is twice differentiable at c and called $\left(f^{\prime}\right)^{\prime}(c)$ its second order derivative at c. We denote it by $f^{\prime \prime}(c)$.

Notation 2. We denote $f^{(1)}=f^{\prime}, f^{(2)}=f^{\prime \prime}$.
Definition 3. Let f be $(n-1)$-th differentiable on (a, b). If $f^{(n-1)}(x)$ is differentiable at $c \in(a, b)$, we say f is n-th differentiable at c and denote its n-th derivative at c as $f^{(n)}(c):=\left(f^{(n-1)}\right)^{\prime}(c)$.

Notation 4. For $n \leqslant 3$ we usually write $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ for $f^{(1)}, f^{(2)}, f^{(3)}$.

Proposition 5. Let f be k-th differentiable at c. Then for every $m, n \in \mathbb{N}$ with $m+n=k$, we have

$$
\begin{equation*}
f^{(k)}(c)=\left(f^{(m)}\right)^{(n)}(c) . \tag{1}
\end{equation*}
$$

Proof. We prove by induction.

- Base. $k=2$. In this case $m=n=1$ and the conclusion follows from Definition 1 .
- Induction. Assume the conclusion holds for $k=l$. Let $k=l+1$ and $m, n \in \mathbb{N}$ be such that $m+n=l+1$.
- Case 1. $n=1$. In this case the conclusion follows from Definition 3.
- Case 2. $n>1$. We have $n-1 \in \mathbb{N}$ and by induction hypothesis

$$
\begin{equation*}
f^{(k)}(c)=\left(f^{(k-1)}\right)^{\prime}(c)=\left(\left(f^{(m)}\right)^{(n-1)}\right)^{\prime}(c)=\left(f^{(m)}\right)^{(n)}(c) \tag{2}
\end{equation*}
$$

thanks to Definition 3.

Exercise 1. Let f, g be n-th differentiable at c. Prove

- $f \pm g$ is n-th differentiable at c with

$$
\begin{equation*}
(f \pm g)^{(n)}(c)=f^{(n)}(c) \pm g^{(n)}(c) . \tag{3}
\end{equation*}
$$

- If $a \in \mathbb{R}$ then $a f$ is n-th differentiable at c with

$$
\begin{equation*}
(a f)^{(n)}(c)=a f^{(n)}(c) . \tag{4}
\end{equation*}
$$

- $f g$ is n-th differentiable at c;
- If $g(c) \neq 0, \frac{f}{g}$ is n-th differentiable at c.
- Calculation of higher order derivatives.
- Calculating a particular higher order derivative is simple.

Example 6. Calculate $(\arctan x)^{\prime \prime \prime}$.
Solution. We have

$$
\begin{align*}
(\arctan x)^{\prime \prime \prime} & =\left[(\arctan x)^{\prime}\right]^{\prime \prime} \\
& =\left(\frac{1}{1+x^{2}}\right)^{\prime \prime} \\
& =\left(-\frac{2 x}{\left(1+x^{2}\right)^{2}}\right)^{\prime} \\
& =-\frac{2}{\left(1+x^{2}\right)^{2}}+2 \frac{4 x^{2}}{\left(1+x^{2}\right)^{3}} \\
& =\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}} . \tag{5}
\end{align*}
$$

- Things become subtle when we need to calculate derivative of a generic order n (or when we need to calculate a very high order of derivative).

Example 7. Calculate $(\cos x)^{(n)}$.
Solution. We observe

$$
(\cos x)^{(n)}=\left\{\begin{array}{ll}
-\sin x & n=4 k+1 \tag{6}\\
-\cos x & n=4 k+2 \\
\sin x & n=4 k+3 \\
\cos x & n=4 k+4
\end{array}=\cos \left(x-\frac{n \pi}{2}\right) .\right.
$$

The proof (through induction) of this formula is left as exercise.

Exercise 2. Calculate $\left(x^{k}\right)^{(n)}$ for $n, k \in \mathbb{N}$. Justify.
Exercise 3. Calculate $\left(e^{4 x}\right)^{(n)}$ for all $n \in \mathbb{N}$. Justify.
Exercise 4. Calculate $(\ln (1+x))^{(n)}$ for all $n \in \mathbb{N}$. Justify.
Example 8. Calculate $(\arctan x)^{(n)}$ at $x=0$.

Solution.

- Method 1. Let $y(x):=\arctan x$. We claim

$$
\begin{equation*}
y^{(n)}(x)=(n-1)!\cos ^{n} y \sin \left(n\left(y+\frac{\pi}{2}\right)\right) . \tag{7}
\end{equation*}
$$

Then we have $y^{(n)}(0)=(n-1)!\sin \left(-\frac{n \pi}{2}\right)$. We prove (7) by induction.

- Base. We have

$$
\begin{equation*}
y^{\prime}(x)=\frac{1}{1+x^{2}}=\cos ^{2} y=(1-1)!\cos ^{1} y \sin \left(1 \cdot\left(y+\frac{\pi}{2}\right)\right) . \tag{8}
\end{equation*}
$$

- Induction. Assuming (7), we calculate

$$
\begin{align*}
y^{(n+1)}(x)= & (n-1)!\left[\cos ^{n} y \sin \left(n\left(y+\frac{\pi}{2}\right)\right)\right]^{\prime} \\
= & (n-1)!\left[n \cos ^{n-1} y(-\sin y) y^{\prime} \sin \left(n\left(y+\frac{\pi}{2}\right)\right)+\right. \\
& \left.\cos ^{n} y n \cos \left(n\left(y+\frac{\pi}{2}\right)\right) y^{\prime}\right] \\
= & n!\cos ^{n+1} y\left[-\sin y \sin \left(n\left(y+\frac{\pi}{2}\right)\right)+\cos y \cos (n(y+\right. \\
& \left.\left.\left.\frac{\pi}{2}\right)\right)\right] \\
= & n!\cos ^{n+1} y\left[\cos \left(y+\frac{\pi}{2}\right) \sin \left(n\left(y+\frac{\pi}{2}\right)\right)+\sin (y+\right. \\
& \left.\left.\frac{\pi}{2}\right) \cos \left(n\left(y+\frac{\pi}{2}\right)\right)\right] \tag{9}\\
= & n!\cos ^{n+1} y \sin \left[(n+1)\left(y+\frac{\pi}{2}\right)\right] .
\end{align*}
$$

- Method 2.

Theorem 9. (Leibniz formula) We have

$$
\begin{equation*}
(u v)^{(n)}(c)=\sum_{k=0}^{n}\binom{n}{k} u^{(k)}(c) v^{(n-k)}(c) \tag{10}
\end{equation*}
$$

if all derivatives involved exist.
Exercise 5. Prove this formula through induction.
Applying Leibniz formula to

$$
\begin{equation*}
\left(1+x^{2}\right) y^{\prime}=1 \tag{11}
\end{equation*}
$$

we have
which gives

$$
\begin{equation*}
\sum_{k=0}^{n-1}\binom{n-1}{k}\left(1+x^{2}\right)^{(k)} y^{(n-k)}=0 \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
y^{(n)}=-\sum_{k=1}^{n-1}\binom{n-1}{k}\left(1+x^{2}\right)^{(k)} y^{(n-k)} . \tag{13}
\end{equation*}
$$

Exercise 6. Calculate $\left(1+x^{2}\right)^{(k)}$ for a generic $k \in \mathbb{N}$.
Exercise 7. Complete the calculation of $(\arctan x)^{(n)}$ at $x=0$ using Method 2.
Exercise 8. Calculate $(\arcsin x)^{(n)}(0)$ for $n \in \mathbb{N}$. Justify.
Exercise 9. Calculate $(\tan x)^{(n)}$ for $n=1,2, \ldots, 8$.
Exercise 10. Let $x(t):=t-\sin t, y(t):=1-\cos t$.
a) Prove that $x(t) \mapsto y(t)$ defines a function $y=y(x)$.
b) Calculate $y^{\prime \prime}(0)$.

