Read: 314 Differentiation §4.1.

• Higher Order Derivatives.

DEFINITION 1. Let f be differentiable on (a, b). If f'(x) is differentiable at some $c \in (a, b)$, we say f is twice differentiable at c and called (f')'(c) its second order derivative at c. We denote it by f''(c).

NOTATION 2. We denote $f^{(1)} = f', f^{(2)} = f''$.

DEFINITION 3. Let f be (n-1)-th differentiable on (a, b). If $f^{(n-1)}(x)$ is differentiable at $c \in (a, b)$, we say f is n-th differentiable at c and denote its n-th derivative at c as $f^{(n)}(c) := (f^{(n-1)})'(c)$.

NOTATION 4. For $n \leq 3$ we usually write f', f'', f''' for $f^{(1)}, f^{(2)}, f^{(3)}$.

PROPOSITION 5. Let f be k-th differentiable at c. Then for every $m, n \in \mathbb{N}$ with m + n = k, we have

$$f^{(k)}(c) = (f^{(m)})^{(n)}(c).$$
(1)

Proof. We prove by induction.

- Base. k=2. In this case m=n=1 and the conclusion follows from Definition 1.
- Induction. Assume the conclusion holds for k = l. Let k = l + 1 and $m, n \in \mathbb{N}$ be such that m + n = l + 1.
 - Case 1. n = 1. In this case the conclusion follows from Definition 3.
 - Case 2. n > 1. We have $n 1 \in \mathbb{N}$ and by induction hypothesis

$$f^{(k)}(c) = \left(f^{(k-1)}\right)'(c) = \left(\left(f^{(m)}\right)^{(n-1)}\right)'(c) = \left(f^{(m)}\right)^{(n)}(c) \tag{2}$$

thanks to Definition 3.

Exercise 1. Let f, g be *n*-th differentiable at *c*. Prove

 \circ $f \pm g$ is *n*-th differentiable at *c* with

$$(f \pm g)^{(n)}(c) = f^{(n)}(c) \pm g^{(n)}(c).$$
(3)

• If $a \in \mathbb{R}$ then a f is *n*-th differentiable at *c* with

$$(a f)^{(n)}(c) = a f^{(n)}(c).$$
(4)

- \circ fg is n-th differentiable at c;
- $\circ \quad \text{If } g(c) \neq 0, \, \tfrac{f}{g} \text{ is } n\text{-th differentiable at } c.$

- Calculation of higher order derivatives.
 - Calculating a particular higher order derivative is simple.

Example 6. Calculate $(\arctan x)'''$.

Solution. We have

$$(\arctan x)''' = [(\arctan x)']'' \\= \left(\frac{1}{1+x^2}\right)'' \\= \left(-\frac{2x}{(1+x^2)^2}\right)' \\= -\frac{2}{(1+x^2)^2} + 2\frac{4x^2}{(1+x^2)^3} \\= \frac{6x^2 - 2}{(1+x^2)^3}.$$
(5)

• Things become subtle when we need to calculate derivative of a generic order n (or when we need to calculate a very high order of derivative).

Example 7. Calculate $(\cos x)^{(n)}$. Solution. We observe

$$(\cos x)^{(n)} = \begin{cases} -\sin x & n = 4k+1\\ -\cos x & n = 4k+2\\ \sin x & n = 4k+3\\ \cos x & n = 4k+4 \end{cases} = \cos\left(x - \frac{n\pi}{2}\right). \tag{6}$$

The proof (through induction) of this formula is left as exercise.

Exercise 2. Calculate (x^k)⁽ⁿ⁾ for n, k ∈ N. Justify.
Exercise 3. Calculate (e^{4x})⁽ⁿ⁾ for all n ∈ N. Justify.
Exercise 4. Calculate (ln(1+x))⁽ⁿ⁾ for all n ∈ N. Justify.

Example 8. Calculate $(\arctan x)^{(n)}$ at x = 0.

Solution.

- Method 1. Let $y(x) := \arctan x$. We claim

$$y^{(n)}(x) = (n-1)! \cos^n y \sin\left(n\left(y + \frac{\pi}{2}\right)\right).$$
 (7)

Then we have $y^{(n)}(0) = (n-1)! \sin\left(-\frac{n\pi}{2}\right)$. We prove (7) by induction.

• Base. We have

$$y'(x) = \frac{1}{1+x^2} = \cos^2 y = (1-1)! \cos^1 y \sin\left(1 \cdot \left(y + \frac{\pi}{2}\right)\right).$$
(8)

• Induction. Assuming (7), we calculate

$$y^{(n+1)}(x) = (n-1)! \left[\cos^{n}y \sin\left(n\left(y+\frac{\pi}{2}\right)\right) \right]'$$

= $(n-1)! \left[n \cos^{n-1}y \left(-\sin y\right) y' \sin\left(n\left(y+\frac{\pi}{2}\right)\right) + \cos^{n}y n \cos\left(n\left(y+\frac{\pi}{2}\right)\right) y' \right]$
= $n! \cos^{n+1}y \left[-\sin y \sin\left(n\left(y+\frac{\pi}{2}\right)\right) + \cos y \cos\left(n\left(y+\frac{\pi}{2}\right)\right) \right]$
= $n! \cos^{n+1}y \left[\cos\left(y+\frac{\pi}{2}\right) \sin\left(n\left(y+\frac{\pi}{2}\right)\right) + \sin\left(y+\frac{\pi}{2}\right) \cos\left(n\left(y+\frac{\pi}{2}\right)\right) \right]$
= $n! \cos^{n+1}y \sin\left[(n+1)\left(y+\frac{\pi}{2}\right)\right].$ (9)

– Method 2.

THEOREM 9. (LEIBNIZ FORMULA) We have

$$(uv)^{(n)}(c) = \sum_{k=0}^{n} {\binom{n}{k}} u^{(k)}(c) v^{(n-k)}(c)$$
(10)

if all derivatives involved exist.

Exercise 5. Prove this formula through induction.

Applying Leibniz formula to

$$(1+x^2) y' = 1 \tag{11}$$

we have

$$\sum_{k=0}^{n-1} \binom{n-1}{k} (1+x^2)^{(k)} y^{(n-k)} = 0$$
(12)

which gives

$$y^{(n)} = -\sum_{k=1}^{n-1} \binom{n-1}{k} (1+x^2)^{(k)} y^{(n-k)}.$$
(13)

Exercise 6. Calculate $(1+x^2)^{(k)}$ for a generic $k \in \mathbb{N}$.

Exercise 7. Complete the calculation of $(\arctan x)^{(n)}$ at x = 0 using Method 2.

Exercise 8. Calculate $(\arcsin x)^{(n)}(0)$ for $n \in \mathbb{N}$. Justify.

Exercise 9. Calculate $(\tan x)^{(n)}$ for n = 1, 2, ..., 8.

Exercise 10. Let $x(t) := t - \sin t$, $y(t) := 1 - \cos t$.

- a) Prove that $x(t) \mapsto y(t)$ defines a function y = y(x).
- b) Calculate y''(0).