MATH 117 FALL 2014 LECTURE 40 (Nov. 17, 2014)

Read: Bowman §4.F, 314 Differentiation §3.2, §3.3.

• L'Hospital's Rule.

THEOREM 1. Let $a \in \mathbb{R}$. If there is $\delta > 0$ such that

- *i.* f, g differentiable on $(a \delta, a + \delta) \{a\}$;
- *ii.* $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$;
- iii. $\lim_{x\to a} \frac{f'(x)}{a'(x)} = L$ (L could be a real number of $\pm \infty$);
- *iv.* $g'(x) \neq 0$ on $(a \delta, a + \delta) \{a\}$;

Then $\lim_{x\to a} \frac{f(x)}{g(x)} = L$.

Remark 2. " $x \rightarrow a$ " can be replaced by anyone of the following

$$x \to +\infty; \quad x \to -\infty; \quad x \to a+; \quad x \to a-.$$
 (1)

Example 3. Calculate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$. **Solution.** Let $f(x) = 1 - \cos x$, $g(x) = x^2$. Take $\delta = 1$. Obviously i, ii, iv are satisfied. For iii we calculate $f'(x) = \sin x$, g'(x) = 2x. It is not clear what $\lim_{x\to 0} \frac{\sin x}{2x}$ is. However we notice that $\sin x$ and 2x also satisfies i, ii, iv on $(-1, 1) - \{0\}$ and therefore we could try to apply L'Hospital's rule to calculate $\lim_{x\to 0} \frac{\sin x}{2x}$. Taking derivatives we have

$$\lim_{x \to 0} \frac{(\sin x)'}{(2x)'} = \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}.$$
(2)

Therefore $\lim_{x\to 0} \frac{\sin x}{2x} = \frac{1}{2}$ and consequently $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$.

Exercise 1. Calculate $\lim_{x\to 1} \frac{\ln x}{x-1}$.

Exercise 2. Calculate $\lim_{x\to 0} \frac{x-\sin x}{x^2 \sin x}$.

Example 4. Calculate $\lim_{x\to 0+} \frac{\sqrt{x}}{1-e^{2\sqrt{x}}}$. Solution. Observe that it is equivalent t

Solution. Observe that it is equivalent to calculate $\lim_{t\to 0+} \frac{t}{1-e^{2t}}$ (see Exercise 4). Application of L'Hospital to this limit gives the limit to be

$$\lim_{t \to 0+} \frac{t'}{(1-e^{2t})'} = \lim_{t \to 0+} \frac{1}{-2e^{2t}} = -\frac{1}{2}.$$
(3)

Exercise 3. Convince yourself that direct application of L'Hospital to $\lim_{x\to 0+} \frac{\sqrt{x}}{1-e^{2\sqrt{x}}}$ is not a good idea. **Exercise 4.** Prove that

$$\lim_{x \to 0+} \frac{\sqrt{x}}{1 - e^{2\sqrt{x}}} = L \Longleftrightarrow \lim_{t \to 0+} \frac{t}{1 - e^{2t}} = L.$$

$$\tag{4}$$

Exercise 5. Show that L'Hospital's rule in general does not hold if assumption *ii* is dropped.

Proof of L'Hospital.

THEOREM 5. (CAUCHY'S MVT) Let $f(x), g(x): [a, b] \mapsto \mathbb{R}$ satisfy i. f, g are differentiable on (a, b);

- ii. f, g are continuous on [a, b];
- iii. $g'(x) \neq 0$ on (a, b).

Then there is $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$
(5)

Proof. Define

$$h(x) := f(x) (g(b) - g(a)) - g(x) (f(b) - f(a)).$$
(6)

Then one easily checks that h satisfies the three conditions for Rolle's Theorem. Thus there is $c \in (a, b)$ such that h'(c) = 0 and the conclusion follows.

Proof. (OF L'HOSPITAL'S RULE) We prove it for the case $L \in \mathbb{R}$. Define

$$F(x) := \begin{cases} f(x) & x \neq a \\ 0 & x = a \end{cases}; \qquad G(x) := \begin{cases} g(x) & x \neq a \\ 0 & x = a \end{cases}.$$
(7)

Then F, G are continuous on $(a - \delta, a + \delta)$ (Exercise 6).

Let $\varepsilon > 0$ be arbitrary. As $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$ there is $\delta_1 > 0$ such that

$$\forall 0 < |x-a| < \delta_1, \qquad \left| \frac{f'(x)}{g'(x)} - L \right| < \varepsilon.$$
(8)

Now consider an arbitrary x such that $0 < |x - a| < \min \{\delta_1, \delta\}$. We have

$$\frac{f(x)}{g(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(c)}{G'(c)} = \frac{f'(c)}{g'(c)}$$
(9)

for some c between x and a. For such c we have $0 < |c-a| < \delta_1$ and thus

$$\left|\frac{f(x)}{g(x)} - L\right| = \left|\frac{f'(c)}{g'(c)} - L\right| < \varepsilon.$$
(10)

Thus by definition $\lim_{x\to a} \frac{f(x)}{g(x)} = L$.

Exercise 6. Prove that F, G are continuous on $(a - \delta, a + \delta)$.

Exercise 7. Prove L'Hospital's Rule for the cases $L = \pm \infty$.

- L'Hospital's Rule in other situations.
 - We face the following situations when studying limits:

$$\lim (cf), \quad \lim (f+g), \quad \lim (fg), \quad \lim \frac{f}{g}.$$
 (11)

When we allow $\lim f$ and $\lim g$ to take $\pm \infty$ (and 0 in the last situation), we find ourselves facing several "undetermined" cases. For example

$$\lim f = +\infty, \lim g = -\infty, \qquad \lim (f+g) = ? \tag{12}$$

Exercise 8. Show that $\lim (f+g)$ could be any one of the four possibilities: a real number, $\pm \infty$, does not exist.

The situation in (12) is oftened denoted as $\infty - \infty$. The case we have just settled above is $\frac{0}{0}$.

It turns out that all the "undetermined" cases could be reduced to either $\frac{0}{0}$ or $\frac{\infty}{\infty}$. • Naively, one may think $\frac{\infty}{\infty}$ could further be reduced to $\frac{0}{0}$ through setting $F = \frac{1}{f}$ and $G = \frac{1}{g}$. However this is not practical.

Example 6. Consider $\lim_{x\to\infty} x^3 e^{-x}$. If we let $f(x) := e^{-x}$ and $g(x) := x^{-3}$, then we have a $\frac{0}{0}$ type limit $\lim_{x\to\infty} \frac{f(x)}{g(x)}$. However a bit calculation would reveal that application of L'Hospital to this pair of f, g does not lead us anywhere.

• It turns out that there is a L'Hospital's rule for $\frac{\infty}{\infty}$ where the only major difference from Theorem 1 is that ii becomes $\lim_{x\to a} f = +\infty$ (or $-\infty$), $\lim_{x\to a} g = +\infty$ (or $-\infty$).

Exercise 9. It is tempting to prove L'Hospital's Rule for $\frac{\infty}{\infty}$ as follows: Let F := 1/f, G := 1/g and apply L'Hospital's Rule for $\frac{0}{0}$. Explain why the situation is not so simple.