Math 117 Fall 2014 Lecture 39 (Nov. 14, 2014)

Read: Bowman §5.E, 314 Integration §3.

- Evaluation of Integrals. So far we have
- By defintion.

1. Let P be an arbitrary partition of $[a, b]$. Calculate $U(f, P), L(f, P)$ and simplify if possible.
2. Calculate $U(f):=\inf _{P} U(f, P), L(f):=\sup _{P} L(f, P)$.
3. If $U(f)=L(f)$ then f is integrable on $[a, b]$ with $\int_{a}^{b} f(x) \mathrm{d} x=U(f)=L(f)$. If $U(f) \neq L(f)$ then f is not integrable on $[a, b]$.

- By clever choice of partitions.

Find a sequence of partitions P_{n} such that $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} L\left(f, P_{n}\right) \in$ \mathbb{R}.

- Fundamental Theorems of Calculus

Theorem 1. (FTC Version 1) Let $f:[a, b] \mapsto \mathbb{R}$ and $F:[a, b] \mapsto \mathbb{R}$ satisfy
i. f is integrable on $[a, b]$;
ii. F is differentiable on (a, b) with $F^{\prime}=f$ on (a, b);
iii. F is continuous on $[a, b]$.

Then we have

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) \tag{1}
\end{equation*}
$$

Proof. Let P be an arbitrary partition of $[a, b], P: a=x_{0}<x_{1}<\cdots<x_{n}=b$. Then for every $k \in\{1, \ldots, n\}$ we see that $F(x)$ satisfies the conditions for MVT. Therefore

$$
\begin{align*}
F(b)-F(a) & =\left[F\left(x_{n}\right)-F\left(x_{n-1}\right)\right]+\left[F\left(x_{n-1}\right)-F\left(x_{n-2}\right)\right]+\cdots+\left[F\left(x_{1}\right)-F\left(x_{0}\right)\right] \\
& =f\left(c_{n}\right)\left(x_{n}-x_{n-1}\right)+\cdots+f\left(c_{1}\right)\left(x_{1}-x_{0}\right) \\
& \leqslant\left(\sup _{\left[x_{n-1}, x_{n}\right]} f\right)\left(x_{n}-x_{n-1}\right)+\cdots+\left(\sup _{\left[x_{0}, x_{1}\right]} f\right)\left(x_{1}-x_{0}\right) \\
& =U(f, P) . \tag{2}
\end{align*}
$$

Here the inequality is because $c_{k} \in\left(x_{k-1}, x_{k}\right)$ and it then follows $f\left(c_{k}\right) \leqslant \sup _{\left[x_{k-1}, x_{k}\right]} f$. Thus we have shown $F(b)-F(a) \leqslant U(f, P)$ for every partition P. Taking infimum of both sides we have $F(b)-F(a) \leqslant U(f)$.

Similarly we can prove $F(b)-F(a) \geqslant L(f)$. Since f is integrable, $U(f)=L(f)=$ $\int_{a}^{b} f(x) \mathrm{d} x$ and the conclusion follows.
Example 2. Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$.
Solution. We know that

$$
\begin{equation*}
(\arctan x)^{\prime}=\frac{1}{1+x^{2}} \tag{3}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Therefore the conditions for FTCV1 are all satisfied. Consequently

$$
\begin{equation*}
\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x=\arctan 1-\arctan 0=\frac{\pi}{4} \tag{4}
\end{equation*}
$$

Exercise 1. Try to evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$ through definition or through clever choice of partitions, and appreciate the power of FTCV1.
Exercise 2. Prove that there is no $F:[0,1] \mapsto \mathbb{R}$ such that on $(0,1), F^{\prime}(x)=R(x):=\left\{\begin{array}{ll}\frac{1}{q} & x=\frac{p}{q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$, although the Riemann function $R(x)$ is integrable on $[0,1]$.

Theorem 3. (FTC Version 2) Let $f:[a, b] \mapsto \mathbb{R}$ be integrable on $[a, b]$.
a) then $G(x):=\int_{a}^{x} f(t) \mathrm{d} t$ is defined for every $x \in[a, b]$ and furthermore is continuous on $[a, b]$.
$b)$ if furthermore f is continuous at $c \in(a, b), G(x)$ is differentiable at c with $G^{\prime}(c)=f(c)$.
The proof of Theorem 3 relies on the following lemmas.
Lemma 4. Let $f(x)$ be integrable on $[a, b]$. Then $f(x)$ is bounded on $[a, b]$.
Proof. Assume the contrary. Then there is either $\left\{c_{n}\right\} \subset[a, b]$ such that $\lim _{n \rightarrow \infty} f\left(c_{n}\right)=+\infty$ or $\left\{c_{n}\right\} \subset[a, b]$ such that $\lim _{n \rightarrow \infty} f\left(c_{n}\right)=-\infty$. Wlog assume the former is true.

Let P be an arbitrary partition of $[a, b], P: a=x_{0}<x_{1}<\cdots<x_{m}=b$. Then there is $k_{0} \in\{1,2, \ldots, n\}$ such that $\left[x_{k_{0}-1}, x_{k_{0}}\right.$] contains infinitely many c_{n} 's and consequently

$$
\begin{equation*}
\sup _{\left[x_{k_{0}-1}, x_{k_{0}}\right]} f=+\infty \tag{5}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
U(f, P)=\sum_{k=1}^{n}\left(\sup _{\left[x_{k-1}, x_{k}\right]} f\right)\left(x_{k}-x_{k-1}\right) \geqslant \sum_{k \neq k_{0}} f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)+\infty=+\infty \tag{6}
\end{equation*}
$$

Therefore $U(f)=\inf _{P} U(f, P)$ cannot be finite and f cannot be integrable.
Exercise 3. Prove Lemma 4 directly as follows.
i. Prove that if f is integrable on $[a, b]$, so is $|f|$.
ii. Let $L:=\int_{a}^{b}|f(x)| \mathrm{d} x$. There is P such that $U(|f|, P) \leqslant L+1$. Now prove that $\sup _{\left[x_{k-1}, x_{k}\right]} f<\infty$ for each k.

LEMMA 5. Let f, g, h be integrable on $[a, b]$ and $\forall x \in[a, b], f(x) \leqslant g(x) \leqslant h(x)$. Then

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x \leqslant \int_{a}^{b} g(x) \mathrm{d} x \leqslant \int_{a}^{b} h(x) \mathrm{d} x \tag{7}
\end{equation*}
$$

Exercise 4. Prove Lemma 5.
Exercise 5. Prove or disprive: Let f, g, h be integrable on $[a, b]$ and $\forall x \in[a, b], f(x)<g(x)<h(x)$. Then

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x<\int_{a}^{b} g(x) \mathrm{d} x<\int_{a}^{b} h(x) \mathrm{d} x . \tag{8}
\end{equation*}
$$

What if we further assume f, g, h are all continuous?
Exercise 6. Let f be integrable on $[a, b]$. Prove that $\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leqslant \int_{a}^{b}|f(x)| \mathrm{d} x$.
Proof. (FTC VERSION 2)
a) Since f is integrable on $[a, b]$ it is also integrable on every $[a, x]$ so G is well-defined for all $x \in[a, b]$. As f is bounded, there is $M>0$ such that $-M<f(x)<M$ for all $x \in[a, b]$.

- Right continuity at a.

For every $x>a$ we have

$$
\begin{equation*}
G(x)-G(a)=\int_{a}^{x} f(t) \mathrm{d} t \leqslant \int_{a}^{x} M \mathrm{~d} x=M(x-a) . \tag{9}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
G(x)-G(a) \geqslant-M(x-a) . \tag{10}
\end{equation*}
$$

By Squeeze Theorem we conclude $\lim _{x \rightarrow a+} G(x)=G(a)$.

- Continuity at $c \in(a, b)$ and left continuity at b : Exercises.
b) Let $c \in(a, b)$ be arbitrary. We prove $\lim _{x \rightarrow c+} \frac{G(x)-G(c)}{x-c}=f(c)$ and left $\lim _{x \rightarrow c-} \frac{G(x)-G(c)}{x-c}=f(c)$ as an exercise.

Let $\varepsilon>0$ be arbitrary. As f is continuous at c, there is $\delta>0$ such that when $|x-c|<\delta,|f(x)-f(c)|<\varepsilon$. Now for every $0<x-c<\delta$ we have

$$
\begin{align*}
\left|\frac{G(x)-G(c)}{x-c}-f(c)\right| & =\frac{1}{x-c}|[G(x)-G(c)]-f(c)(x-c)| \\
& =\frac{1}{x-c}\left|\int_{c}^{x} f(t) \mathrm{d} t-\int_{c}^{x} f(c) \mathrm{d} t\right| \\
& =\frac{1}{x-c}\left|\int_{c}^{x}[f(t)-f(c)] \mathrm{d} x\right| \\
& \leqslant \frac{1}{x-c} \int_{c}^{x}|f(t)-f(c)| \mathrm{d} x \\
& \leqslant \frac{1}{x-c} \int_{c}^{x} \varepsilon \mathrm{~d} x=\varepsilon . \tag{11}
\end{align*}
$$

Thus ends the proof.
Example 6. Let $G(x):=\int_{1}^{x} e^{-t^{2}} \mathrm{~d} t, G_{1}(x):=\int_{1}^{x^{3}} e^{-t^{2}} \mathrm{~d} t, G_{2}(x):=\int_{\sin x}^{x^{3}} e^{-t^{2}} \mathrm{~d} t$. Prove that $G(x), G_{1}(x), G_{2}(x)$ are differentiable on \mathbb{R} and calculate their derivatives.
Solution. We know that $e^{-t^{2}}$ is continuous on \mathbb{R} and integrable on every $[1, x]$, therefore $G(x)$ is differentiable on \mathbb{R}. The differentiability of $G_{1}(x)$ and $G_{2}(x)$ follows from

$$
\begin{equation*}
G_{1}(x)=G\left(x^{3}\right), \quad G_{2}(x)=G\left(x^{3}\right)-G(\sin x) . \tag{12}
\end{equation*}
$$

Now we easily calculate

$$
\begin{equation*}
G^{\prime}(x)=e^{-x^{2}} ; \quad G_{1}^{\prime}(x)=3 x^{2} e^{-x^{6}} ; \quad G_{2}^{\prime}(x)=3 x^{2} e^{-x^{6}}-e^{-(\sin x)^{2}} \cos x . \tag{13}
\end{equation*}
$$

