
Math 117 Fall 2014 Lecture 39 (Nov. 14, 2014)

Read: Bowman �5.E, 314 Integration �3.

� Evaluation of Integrals. So far we have

� By de�ntion.

1. Let P be an arbitrary partition of [a; b]. Calculate U(f ; P ); L(f ; P ) and
simplify if possible.

2. Calculate U(f) := infPU(f ; P ), L(f) := supPL(f ; P ).

3. If U(f) =L(f) then f is integrable on [a; b] with
R
a

b
f(x) dx=U(f) =L(f).

If U(f)=/ L(f) then f is not integrable on [a; b].

� By clever choice of partitions.
Find a sequence of partitions Pn such that limn!1U(f ; Pn)= limn!1L(f ; Pn)2

R.

� Fundamental Theorems of Calculus

Theorem 1. (FTC Version 1) Let f : [a; b] 7!R and F : [a; b] 7!R satisfy

i. f is integrable on [a; b];

ii. F is di�erentiable on (a; b) with F 0= f on (a; b);

iii. F is continuous on [a; b].

Then we have Z
a

b

f(x) dx=F (b)¡F (a): (1)

Proof. Let P be an arbitrary partition of [a; b], P :a=x0<x1< ���<xn= b. Then for every
k2f1; :::; ng we see that F (x) satis�es the conditions for MVT. Therefore

F (b)¡F (a) = [F (xn)¡F (xn¡1)]+ [F (xn¡1)¡F (xn¡2)]+ ���+ [F (x1)¡F (x0)]
= f(cn) (xn¡xn¡1)+ ���+ f(c1) (x1¡x0)
6

�
sup

[xn¡1;xn]
f
�
(xn¡xn¡1)+ ���+

�
sup
[x0;x1]

f
�
(x1¡x0)

= U(f ; P ): (2)

Here the inequality is because ck2 (xk¡1; xk) and it then follows f(ck)6 sup[xk¡1;xk]f . Thus
we have shown F (b)¡ F (a)6U(f ; P ) for every partition P . Taking in�mum of both sides
we have F (b)¡F (a)6U(f).

Similarly we can prove F (b) ¡ F (a) > L(f). Since f is integrable, U(f) = L(f) =R
a

b
f(x) dx and the conclusion follows. �

Example 2. Evaluate
R
0

1 1

1+x2
dx.

Solution. We know that

(arctanx)0= 1
1+ x2

(3)

for all x2R. Therefore the conditions for FTCV1 are all satis�ed. ConsequentlyZ
0

1 1
1+x2

dx= arctan1¡ arctan0= �
4
: (4)



Exercise 1. Try to evaluate
R
0

1 1

1+ x2
dx through de�nition or through clever choice of partitions, and

appreciate the power of FTCV1.

Exercise 2. Prove that there is no F : [0;1] 7!R such that on (0;1), F 0(x)=R(x) :=

(
1

q
x=

p

q

0 x2/Q
, although

the Riemann function R(x) is integrable on [0; 1].

Theorem 3. (FTC Version 2) Let f : [a; b] 7!R be integrable on [a; b].

a) then G(x) :=
R
a

x
f(t) dt is de�ned for every x 2 [a; b] and furthermore is continuous

on [a; b].

b) if furthermore f is continuous at c2(a; b), G(x) is di�erentiable at c withG0(c)= f(c).

The proof of Theorem 3 relies on the following lemmas.

Lemma 4. Let f(x) be integrable on [a; b]. Then f(x) is bounded on [a; b].

Proof. Assume the contrary. Then there is either fcng� [a; b] such that limn!1f(cn)=+1
or fcng� [a; b] such that limn!1f(cn)=¡1. Wlog assume the former is true.

Let P be an arbitrary partition of [a; b], P : a = x0 < x1 < ��� < xm = b. Then there is
k02f1; 2; :::; ng such that [xk0¡1; xk0] contains in�nitely many cn's and consequently

sup
[xk0¡1;xk0]

f =+1: (5)

Now we have

U(f ; P )=
X
k=1

n �
sup

[xk¡1;xk]
f
�
(xk¡xk¡1)>

X
k=/ k0

f(xk) (xk¡xk¡1)+1=+1: (6)

Therefore U(f)= infPU(f ; P ) cannot be �nite and f cannot be integrable. �

Exercise 3. Prove Lemma 4 directly as follows.

i. Prove that if f is integrable on [a; b], so is jf j.

ii. Let L :=
R
a

b jf(x)j dx. There is P such that U(jf j; P )6L+1. Now prove that sup[xk¡1;xk]f <1
for each k.

Lemma 5. Let f ; g; h be integrable on [a; b] and 8x2 [a; b]; f(x)6 g(x)6h(x). ThenZ
a

b

f(x) dx6
Z
a

b

g(x) dx6
Z
a

b

h(x) dx: (7)

Exercise 4. Prove Lemma 5.

Exercise 5. Prove or disprive: Let f ; g; h be integrable on [a; b] and 8x2 [a; b]; f(x)<g(x)<h(x). ThenZ
a

b

f(x) dx<

Z
a

b

g(x) dx<

Z
a

b

h(x) dx: (8)

What if we further assume f ; g; h are all continuous?

Exercise 6. Let f be integrable on [a; b]. Prove that
���R

a

b
f(x) dx

���6 R
a

b jf(x)jdx.

Proof. (FTC Version 2)

a) Since f is integrable on [a; b] it is also integrable on every [a; x] so G is well-de�ned for
all x2 [a; b]. As f is bounded, there isM>0 such that¡M<f(x)<M for all x2 [a; b].
� Right continuity at a.



For every x>a we have

G(x)¡G(a)=
Z
a

x

f(t) dt6
Z
a

x

M dx=M (x¡ a): (9)

Similarly

G(x)¡G(a)>¡M (x¡ a): (10)

By Squeeze Theorem we conclude limx!a+G(x)=G(a).

� Continuity at c2 (a; b) and left continuity at b: Exercises.

b) Let c 2 (a; b) be arbitrary. We prove limx!c+
G(x)¡G(c)

x¡ c = f(c) and left

limx!c¡
G(x)¡G(c)

x¡ c = f(c) as an exercise.
Let " > 0 be arbitrary. As f is continuous at c, there is � > 0 such that when

jx¡ cj<�, jf(x)¡ f(c)j<". Now for every 0<x¡ c< � we have����G(x)¡G(c)x¡ c ¡ f(c)
���� = 1

x¡ c j[G(x)¡G(c)]¡ f(c) (x¡ c)j

= 1
x¡ c

����Z
c

x

f(t) dt¡
Z
c

x

f(c) dt
����

= 1
x¡ c

����Z
c

x

[f(t)¡ f(c)] dx
����

6 1
x¡ c

Z
c

x

jf(t)¡ f(c)j dx

6 1
x¡ c

Z
c

x

"dx= ": (11)

Thus ends the proof. �

Example 6. LetG(x) :=
R
1

x
e¡t

2
dt, G1(x) :=

R
1

x3
e¡t

2
dt, G2(x) :=

R
sinx
x3

e¡t
2
dt. Prove that

G(x); G1(x); G2(x) are di�erentiable on R and calculate their derivatives.
Solution. We know that e¡t

2
is continuous on R and integrable on every [1; x], therefore

G(x) is di�erentiable on R. The di�erentiability of G1(x) and G2(x) follows from

G1(x)=G(x3); G2(x)=G(x3)¡G(sinx): (12)

Now we easily calculate

G0(x)= e¡x
2
; G1

0 (x)= 3x2 e¡x
6
; G2

0 (x)= 3x2 e¡x
6¡ e¡(sinx)2 cosx: (13)
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