MATH 117 FALL 2014 LECTURE 39 (Nov. 14, 2014)

Read: Bowman §5.E, 314 Integration §3.

Evaluation of Integrals. So far we have
o By defintion.

1. Let P be an arbitrary partition of [a, b]. Calculate U(f, P), L(f, P) and
simplify if possible.

2. Calculate U(f) :=infpU(f, P), L(f) :=suppL(f, P).
3. If U(f)=L(f) then f is integrable on [a, b] with f: flz)de=U(f)=L(f).
If U(f)+# L(f) then f is not integrable on [a, b].

o By clever choice of partitions.
Find a sequence of partitions P, such that lim, . U(f, P,) =lim,_oL(f, P,) €
R.

Fundamental Theorems of Calculus

THEOREM 1. (FTC VERSION 1) Let f:]a,bl— R and F:[a, bl — R satisfy
i. f is integrable on [a, b];
it. F is differentiable on (a,b) with F'= f on (a,b);
iti. F'is continuous on |a, b].

Then we have

b
/ f(z) da = F(b) - F(a). (1)
Proof. Let P be an arbitrary partition of [a, b], P:a=x¢<x; <--<x,=>. Then for every
ke{l,...,n} we see that F'(z) satisfies the conditions for MVT. Therefore

F(b) = F(a) = [F(xy) = F(op-1)]+ [F(zn-1) — F(zn—2)] + -+ [F(z1) — F(20)]
= flen) (Tn—2n-1) + -+ f(c1) (21— 0)

< <[ sup ]f>(a:n—xn_1)+-~+<[sup]f>(xl—xo)
— U(f,P). | 2)

Here the inequality is because c € (zx—1,7%) and it then follows f(cx) <sup, 4, f- Thus
we have shown F'(b) — F(a) <U(f, P) for every partition P. Taking infimum of both sides
we have F\(b) — F(a) <U(f).

Similarly we can prove F(b) — F(a) > L(f). Since f is integrable, U(f) = L(f) =
J f f(x) dx and the conclusion follows. O

Example 2. Evaluate [ 01 ﬁ dz.
Solution. We know that

1
(arctan:c)'zm (3)

for all z € R. Therefore the conditions for FTCV1 are all satisfied. Consequently

L | us
/0 T2 dz =arctan1 — arctan0 = T (4)



Exercise 1. Try to evaluate fol ﬁdx through definition or through clever choice of partitions, and
appreciate the power of FTCV1.
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Exercise 2. Prove that there is no F:[0,1]— R such that on (0,1), F'(z)=R(z):= {

the Riemann function R(zx) is integrable on [0, 1].

THEOREM 3. (FTC VERSION 2) Let f:]a, bl — R be integrable on [a,b].

a) then G(zx):= faw f(t)dt is defined for every x € [a, b] and furthermore is continuous
on [a,b].

b) if furthermore f is continuous at c€ (a,b), G(x) is differentiable at ¢ with G'(¢) = f(c).
The proof of Theorem 3 relies on the following lemmas.
LEMMA 4. Let f(x) be integrable on [a,b]. Then f(z) is bounded on [a,b].

Proof. Assume the contrary. Then there is either {c, } C [a, b] such that lim,,_, f(¢p) =+00
or {cp} C [a, b] such that lim, . f(c,) = —00. Wlog assume the former is true.
Let P be an arbitrary partition of [a, b], P:a = 2o < 21 < -+ < &y, = b. Then there is
ko€ {1,2,...,n} such that [xg,_1, x| contains infinitely many ¢,’s and consequently
sup f=-+o0. (5)

[ka, lvmko]
Now we have

U(f,P)—Z( sup f)(xk—xk_1)>z Fl@n) (@ — 2p—1) + 00 = +0. (6)
k=1 \[zk—1,7k] k+ko

Therefore U(f) =1infpU(f, P) cannot be finite and f cannot be integrable. O

Exercise 3. Prove Lemma 4 directly as follows.
i. Prove that if f is integrable on [a, ], so is | f|.

ii. Let L:= f; | f(x)|dz. There is P such that U(|f|, P) < L+ 1. Now prove that sup(g, ,q,)f <o
for each k.

LEMMA 5. Let f, g, h be integrable on [a,b] and Yz € [a,b], f(x)<g(x)<h(z). Then
b b b
/ F(z)da < / g(z)dz < / h(z) dz. (7)

Exercise 4. Prove Lemma 5.

Exercise 5. Prove or disprive: Let f, g, h be integrable on [a, b] and Vz € [a, b], f(z)< g(z) <h(z). Then

b b b
/ f(x)dx</ (@) d:c</ h(z) de. (8)
What if we further assume f, g, h are all continuous?
Exercise 6. Let f be integrable on [a, b]. Prove that ‘f; f(@) d:r’ < fab | f(z)| dz.
Proof. (FTC VERSION 2)

a) Since f is integrable on [a, b] it is also integrable on every [a, z] so G is well-defined for
all z €[a,b]. As f is bounded, thereis M >0 such that —M < f(z) <M for all x € [a, b].

o Right continuity at a.



For every = > a we have

/f dt</ Mdz =M (z—a). )

Similarly
G(z)—G(a) = —M (x —a). (10)
By Squeeze Theorem we conclude lim,_,+G(x) = G(a).

o Continuity at ¢ € (a, b) and left continuity at b: Exercises.

b) Let ¢ € (a, b) be arbitrary. We prove lim,_ .y G =Gl _ f(e) and left
G(x) =G(o) _

Let € > 0 be arbitrary. As f is continuous at ¢, there is § > 0 such that when
|z —c| <9, | f(z)— f(c)| <e. Now for every 0 <z —c <0 we have

r—cC

limg o f(c) as an exercise.

=80 po| = L6t - Gtel - fe) (o)
SNy dt_/f o
- 4| vw-
Sy MCRTICILE
< xic/cwsdx:a (11)
Thus ends the proof. O
Example 6. Let G(x fl e dt, Gi(z fl et dt, Go(z) == f:f:x e~ dt. Prove that

G(x),G1(x), Go(x) are dlfferentlable on IR and calculate their derivatives.
Solution. We know that e~ is continuous on R and integrable on every [1, z], therefore
G(z) is differentiable on R. The differentiability of G1(z) and Ga(x) follows from

Gi(z) =G(x?), Go(z) =G(23) — G(sinz). (12)

Now we easily calculate

2

Gz)=e""; Gl(z)=322e " Gé(l‘):3$26_x6—6_(81nw)2COS$C. (13)
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