MATH 117 FALL 2014 LECTURE 39 (Nov. 14, 2014)

Read: Bowman §5.E, 314 Integration §3.

- Evaluation of Integrals. So far we have
 - \circ By definition.
 - 1. Let P be an arbitrary partition of [a, b]. Calculate U(f, P), L(f, P) and simplify if possible.
 - 2. Calculate $U(f) := \inf_P U(f, P), L(f) := \sup_P L(f, P).$
 - 3. If U(f) = L(f) then f is integrable on [a, b] with $\int_a^b f(x) dx = U(f) = L(f)$. If $U(f) \neq L(f)$ then f is not integrable on [a, b].
 - By clever choice of partitions. Find a sequence of partitions P_n such that $\lim_{n\to\infty} U(f, P_n) = \lim_{n\to\infty} L(f, P_n) \in$
 - $\mathbb{R}.$
- Fundamental Theorems of Calculus

THEOREM 1. (FTC VERSION 1) Let $f: [a, b] \mapsto \mathbb{R}$ and $F: [a, b] \mapsto \mathbb{R}$ satisfy

- *i.* f is integrable on [a, b];
- ii. F is differentiable on (a, b) with F' = f on (a, b);
- iii. F is continuous on [a, b].

Then we have

$$\int_{a}^{b} f(x) \,\mathrm{d}x = F(b) - F(a). \tag{1}$$

Proof. Let P be an arbitrary partition of [a, b], $P: a = x_0 < x_1 < \cdots < x_n = b$. Then for every $k \in \{1, ..., n\}$ we see that F(x) satisfies the conditions for MVT. Therefore

$$F(b) - F(a) = [F(x_n) - F(x_{n-1})] + [F(x_{n-1}) - F(x_{n-2})] + \dots + [F(x_1) - F(x_0)]$$

$$= f(c_n) (x_n - x_{n-1}) + \dots + f(c_1) (x_1 - x_0)$$

$$\leqslant \left(\sup_{[x_{n-1}, x_n]} f \right) (x_n - x_{n-1}) + \dots + \left(\sup_{[x_0, x_1]} f \right) (x_1 - x_0)$$

$$= U(f, P).$$
(2)

Here the inequality is because $c_k \in (x_{k-1}, x_k)$ and it then follows $f(c_k) \leq \sup_{[x_{k-1}, x_k]} f$. Thus we have shown $F(b) - F(a) \leq U(f, P)$ for every partition P. Taking infimum of both sides we have $F(b) - F(a) \leq U(f)$.

Similarly we can prove $F(b) - F(a) \ge L(f)$. Since f is integrable, $U(f) = L(f) = \int_{a}^{b} f(x) dx$ and the conclusion follows.

Example 2. Evaluate $\int_0^1 \frac{1}{1+x^2} dx$. Solution. We know that

$$(\arctan x)' = \frac{1}{1+x^2} \tag{3}$$

for all $x \in \mathbb{R}$. Therefore the conditions for FTCV1 are all satisfied. Consequently

$$\int_0^1 \frac{1}{1+x^2} \, \mathrm{d}x = \arctan 1 - \arctan 0 = \frac{\pi}{4}.$$
 (4)

Exercise 1. Try to evaluate $\int_0^1 \frac{1}{1+x^2} dx$ through definition or through clever choice of partitions, and appreciate the power of FTCV1.

Exercise 2. Prove that there is no $F:[0,1] \mapsto \mathbb{R}$ such that on (0,1), $F'(x) = R(x) := \begin{cases} \frac{1}{q} & x = \frac{p}{q} \\ 0 & x \notin \mathbb{Q} \end{cases}$, although the Riemann function R(x) is integrable on [0,1].

THEOREM 3. (FTC VERSION 2) Let $f: [a, b] \mapsto \mathbb{R}$ be integrable on [a, b].

- a) then $G(x) := \int_{a}^{x} f(t) dt$ is defined for every $x \in [a, b]$ and furthermore is continuous on [a, b].
- b) if furthermore f is continuous at $c \in (a, b)$, G(x) is differentiable at c with G'(c) = f(c).

The proof of Theorem 3 relies on the following lemmas.

LEMMA 4. Let f(x) be integrable on [a, b]. Then f(x) is bounded on [a, b].

Proof. Assume the contrary. Then there is either $\{c_n\} \subset [a, b]$ such that $\lim_{n\to\infty} f(c_n) = +\infty$ or $\{c_n\} \subset [a, b]$ such that $\lim_{n\to\infty} f(c_n) = -\infty$. Wlog assume the former is true.

Let P be an arbitrary partition of [a, b], P: $a = x_0 < x_1 < \cdots < x_m = b$. Then there is $k_0 \in \{1, 2, ..., n\}$ such that $[x_{k_0-1}, x_{k_0}]$ contains infinitely many c_n 's and consequently

$$\sup_{[x_{k_0-1}, x_{k_0}]} f = +\infty.$$
⁽⁵⁾

Now we have

$$U(f,P) = \sum_{k=1}^{n} \left(\sup_{[x_{k-1},x_k]} f \right) (x_k - x_{k-1}) \ge \sum_{k \neq k_0} f(x_k) (x_k - x_{k-1}) + \infty = +\infty.$$
(6)

Therefore $U(f) = \inf_P U(f, P)$ cannot be finite and f cannot be integrable.

Exercise 3. Prove Lemma 4 directly as follows.

- i. Prove that if f is integrable on [a, b], so is |f|.
- ii. Let $L := \int_a^b |f(x)| \, dx$. There is P such that $U(|f|, P) \leq L + 1$. Now prove that $\sup_{[x_{k-1}, x_k]} f < \infty$ for each k.

LEMMA 5. Let f, g, h be integrable on [a, b] and $\forall x \in [a, b], f(x) \leq g(x) \leq h(x)$. Then

$$\int_{a}^{b} f(x) \, \mathrm{d}x \leqslant \int_{a}^{b} g(x) \, \mathrm{d}x \leqslant \int_{a}^{b} h(x) \, \mathrm{d}x. \tag{7}$$

Exercise 4. Prove Lemma 5.

Exercise 5. Prove or disprive: Let f, g, h be integrable on [a, b] and $\forall x \in [a, b], f(x) < g(x) < h(x)$. Then

$$\int_{a}^{b} f(x) \,\mathrm{d}x < \int_{a}^{b} g(x) \,\mathrm{d}x < \int_{a}^{b} h(x) \,\mathrm{d}x. \tag{8}$$

What if we further assume f, g, h are all continuous?

Exercise 6. Let f be integrable on [a, b]. Prove that $\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$.

Proof. (FTC VERSION 2)

- a) Since f is integrable on [a, b] it is also integrable on every [a, x] so G is well-defined for all $x \in [a, b]$. As f is bounded, there is M > 0 such that -M < f(x) < M for all $x \in [a, b]$.
 - \circ Right continuity at a.

For every x > a we have

$$G(x) - G(a) = \int_{a}^{x} f(t) dt \leq \int_{a}^{x} M dx = M (x - a).$$
(9)

Similarly

$$G(x) - G(a) \ge -M (x - a).$$

$$\tag{10}$$

By Squeeze Theorem we conclude $\lim_{x\to a+} G(x) = G(a)$.

- Continuity at $c \in (a, b)$ and left continuity at b: Exercises.
- b) Let $c \in (a, b)$ be arbitrary. We prove $\lim_{x \to c^+} \frac{G(x) G(c)}{x c} = f(c)$ and left $\lim_{x \to c^-} \frac{G(x) G(c)}{x c} = f(c)$ as an exercise.

Let $\varepsilon > 0$ be arbitrary. As f is continuous at c, there is $\delta > 0$ such that when $|x - c| < \delta$, $|f(x) - f(c)| < \varepsilon$. Now for every $0 < x - c < \delta$ we have

$$\left| \frac{G(x) - G(c)}{x - c} - f(c) \right| = \frac{1}{x - c} \left| [G(x) - G(c)] - f(c) (x - c) \right|$$

$$= \frac{1}{x - c} \left| \int_{c}^{x} f(t) dt - \int_{c}^{x} f(c) dt \right|$$

$$= \frac{1}{x - c} \left| \int_{c}^{x} [f(t) - f(c)] dx \right|$$

$$\leqslant \frac{1}{x - c} \int_{c}^{x} \varepsilon dx = \varepsilon.$$
(11)

Thus ends the proof.

Example 6. Let $G(x) := \int_{1}^{x} e^{-t^2} dt$, $G_1(x) := \int_{1}^{x^3} e^{-t^2} dt$, $G_2(x) := \int_{\sin x}^{x^3} e^{-t^2} dt$. Prove that $G(x), G_1(x), G_2(x)$ are differentiable on \mathbb{R} and calculate their derivatives. **Solution.** We know that e^{-t^2} is continuous on \mathbb{R} and integrable on every [1, x], therefore G(x) is differentiable on \mathbb{R} . The differentiability of $G_1(x)$ and $G_2(x)$ follows from

$$G_1(x) = G(x^3), \qquad G_2(x) = G(x^3) - G(\sin x).$$
 (12)

Now we easily calculate

$$G'(x) = e^{-x^2}; \quad G'_1(x) = 3 x^2 e^{-x^6}; \quad G'_2(x) = 3 x^2 e^{-x^6} - e^{-(\sin x)^2} \cos x.$$
(13)