Math 117 Fall 2014 Lecture 38 (Nov. 13, 2014)

Read: Bowman §5.B-5.D, 314 Integration §2.

- Integrability by definition. $f:[a, b] \mapsto \mathbb{R}$.

1. Let P be an arbitrary partition of $[a, b]$. Calculate $U(f, P), L(f, P)$ and simplify if possible.
2. Calculate $U(f):=\inf _{P} U(f, P), L(f):=\sup _{P} L(f, P)$.
3. If $U(f)=L(f)$ then f is integrable on $[a, b]$ with $\int_{a}^{b} f(x) \mathrm{d} x=U(f)=L(f)$. If $U(f) \neq L(f)$ then f is not integrable on $[a, b]$.

Exercise 1. Prove the integrability of x on $[0,1]$ by definition. (Hint: ${ }^{1}$)

- Integrability criteria.

Theorem 1. Let $f:[a, b] \mapsto \mathbb{R}$. Then f is integrable on $[a, b]$ if and only if there is a sequence of partitions P_{n} of $[a, b]$ and $L \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)=L$.

Proof. We leave the "only if" part as exercise.

- "If".
- $\quad U(f) \leqslant L(f)$.

We have $U(f)=\inf _{P} U(f, P) \leqslant U\left(f, P_{n}\right)$ for every $n \in \mathbb{N}$. Thus by Comparison Theorem $U(f) \leqslant L=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)$. Similarly we have $L(f) \geqslant$ L. Therefore $U(f) \leqslant L(f)$.

- $\quad U(f) \geqslant L(f)$.

First note that for every partition P of $[a, b]$, we have

$$
\begin{align*}
& U(f, P)=\sum_{k=1}^{n}\left(\sup _{\left[x_{k-1}, x_{k}\right]} f\right)\left(x_{k}-x_{k-1}\right) \geqslant \sum_{k=1}^{n}\left(\inf _{\left[x_{k-1}, x_{k}\right]} f\right)\left(x_{k}-x_{k-1}\right)=L(f, \\
& P) \tag{1}
\end{align*}
$$

Let P, Q be two arbitrary partitions of $[a, b]$. Then $P \cup Q$ refines both P and Q and consequently

$$
\begin{equation*}
U(f, P) \geqslant U(f, P \cup Q) \geqslant L(f, P \cup Q) \geqslant L(f, Q) . \tag{2}
\end{equation*}
$$

This gives

$$
\begin{equation*}
U(f)=\inf _{P} U(f, P) \geqslant \inf _{P} L(f, Q)=L(f, Q) \tag{3}
\end{equation*}
$$

and furthermore

$$
\begin{equation*}
L(f)=\sup _{Q} L(f, Q) \leqslant \sup _{Q} U(f)=U(f) . \tag{4}
\end{equation*}
$$

Since $U(f) \leqslant L(f)$ and $U(f) \geqslant L(f)$ hold at the same time, there must hold $U(f)=$ $L(f)$.

Example 2. Prove the integrability of $f(x)=x$ on $[0,1]$.

[^0]Solution. Take $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$. Then we have

$$
\begin{equation*}
U\left(f, P_{n}\right)=\sum_{k=1}^{n} \frac{k}{n}\left(\frac{k}{n}-\frac{k-1}{n}\right)=\frac{1}{n^{2}} \sum_{k=1}^{n} k=\frac{n+1}{2 n} \tag{5}
\end{equation*}
$$

and similarly $L\left(f, P_{n}\right)=\frac{n-1}{2 n}$. Clearly $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)=\frac{1}{2}$ and the proof ends.

Exercise 2. Prove the integrability of $f(x)=x^{2}$ on $[0,1]$.
Exercise 3. Prove the integrability of $f(x)=x^{3}$ on $[0,1]$.
Exercise 4. Let $f:[a, b] \mapsto \mathbb{R}$. Prove or disprove: f is integrable on $[a, b]$ if and only if there is a sequence of partitions P_{n} such that $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$.
Problem 1. Let $f:[a, b] \mapsto \mathbb{R}$ be monotone. Prove that f is integrable on $[a, b]$.
Problem 2. Let $f:[a, b] \mapsto \mathbb{R}$ be continuous. Prove that f is integrable on $[a, b]$. (Hint: f is uniformly continuous). Give an example of a discontinuous monotone function.

- Properties.

Lemma 3. Let f be integrable on $[a, b]$. Then f is bounded on $[a, b]$.
Proof. Exercise.
Theorem 4. Let f, g be integrable on $[a, b]$. Let $c \in \mathbb{R}$. Then
a) $c f$ is integrable on $[a, b]$ with $\int_{a}^{b}(c f)(x) \mathrm{d} x=c \int_{a}^{b} f(x) \mathrm{d} x$;
b) $f \pm g$ is integrable on $[a, b]$ with $\int_{a}^{b}(f \pm g)(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x \pm \int_{a}^{b} g(x) \mathrm{d} x$;
c) $f g$ is integrable on $[a, b]$.
d) If there is $c_{0}>0$ such that $|g(x)|>c_{0}$, then $\frac{f}{g}$ is integrable on $[a, b]$.

Proof. Exercises. (See 314 Integration $\S 2$ for b) and c)).
Exercise 5. Find two functions f, g that are integrable on $[0,1], \int_{0}^{1} f(x) \mathrm{d} x=\int_{0}^{1} g(x) \mathrm{d} x=0$, while $\int_{0}^{1}(f g)(x) \mathrm{d} x=1$.
Exercise 6. Find two functions f, g that are integrable on $[0,1], \int_{0}^{1} f(x) \mathrm{d} x=\int_{0}^{1} g(x) \mathrm{d} x=1$, while $\int_{0}^{1}(f g)(x) \mathrm{d} x=0$.
Problem 3. Let $a, b, c \in \mathbb{R}$ be arbitrary. Prove or disprove: There are functions f, g integrable on $[0,1]$ such that $\int_{0}^{1} f(x) \mathrm{d} x=a, \int_{0}^{1} g(x) \mathrm{d} x=b, \int_{0}^{1}(f g)(x) \mathrm{d} x=c$.

Theorem 5. Let $f:[a, b] \mapsto \mathbb{R}$ and let $c \in(a, b)$. Then f is integrable on $[a, b]$ if and only if f is integrable on both $[a, c]$ and $[c, b]$. Furthermore

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x . \tag{6}
\end{equation*}
$$

Proof. We prove "only if". Let f be integrable on $[a, b]$ and we will prove f is integrable on $[a, c]$. The integrability of f on $[c, b]$ can be proved almost identically.

Let $g(x):=\left\{\begin{array}{ll}1 & x \in[a, c] \\ 0 & x \notin[a, c]\end{array}\right.$. Clearly $g(x)$ is integrable on $[a, b]$. Thus by Theorem 4 the function $\tilde{f}(x):=f(x) g(x)=\left\{\begin{array}{ll}f(x) & x \in[a, c] \\ 0 & x \in[c, b]\end{array}\right.$ is integrable on $[a, b]$. Thus there is a sequence of partitions of $[a, b]$, denoted P_{n}, such that $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$. Now set Q_{n} : $=P_{n} \cap[a, c] \cup\{c\}$. Then every Q_{n} is a partition of $[a, c]$ and

$$
\begin{equation*}
0 \leqslant U\left(f, Q_{n}\right)-L\left(f, Q_{n}\right)=U\left(f, P_{n} \cup\{c\}\right)-L\left(f, P_{n} \cup\{c\}\right) \leqslant U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \tag{7}
\end{equation*}
$$

Now application of Squeeze Theorem gives $\lim _{n \rightarrow \infty}\left[U\left(f, Q_{n}\right)-L\left(f, Q_{n}\right)\right]=0$ and integrability follows.

Exercise 7. Prove the "if" part of Theorem 5.
Exercise 8. Prove the "furthermore" part of Theorem 5.
Definition 6. Let $a, b \in \mathbb{R}$ with $a>b$. We say f is integrable on $[a, b]$ if and only if f is integrable on $[b, a]$ and define

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x:=-\int_{b}^{a} f(x) \mathrm{d} x . \tag{8}
\end{equation*}
$$

Exercise 9. Let $a, b, c \in \mathbb{R}$ be arbitrary, and let f be integrable on $[\min \{a, b, c\}, \max \{a, b, c\}]$. Then there holds

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x . \tag{9}
\end{equation*}
$$

- Integrability of the Riemann function $R(x):=\left\{\begin{array}{ll}\frac{1}{q} & x=\frac{p}{q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$ with $(p, q)=1, q>0$ on $[0,1]$.

Proof. It is easy to prove that $L(R, P)=0$ for every partition P of $[0,1]$ (exercise). Let $\varepsilon>0$ be arbitrary. We will construct a partition P_{ε} such that $U\left(R, P_{\varepsilon}\right)<\varepsilon$.

First note that there are only finitely many x such that $R(x)>\frac{\varepsilon}{3}$. Denote them by $c_{1}<c_{2}<\cdots<c_{K}$. Let $\delta_{1}:=\min \left(c_{k}-c_{k-1}\right)$. Now set $\delta:=\min \left\{\frac{\varepsilon}{6 K}, \frac{\delta_{1}}{3}, \frac{c_{1}}{3}, \frac{1-c_{K}}{3}\right\}$. Define

$$
\begin{equation*}
P_{\varepsilon}:=\left\{0, c_{1}-\delta, c_{1}+\delta, c_{2}-\delta, c_{2}+\delta, \ldots, c_{K}-\delta, c_{K}+\delta, 1\right\} \tag{10}
\end{equation*}
$$

Then as $R(x) \leqslant 1$ for all x, we have

$$
\begin{equation*}
\sup _{\left[c_{k}-\delta, c_{k}+\delta\right]} R(x) \leqslant 1 \tag{11}
\end{equation*}
$$

On the other hand on other sub-intervals the supreme of $R(x) \leqslant \frac{\varepsilon}{3}$. Therefore

$$
\begin{equation*}
U\left(R, P_{\varepsilon}\right) \leqslant 2 \delta K+\frac{\varepsilon}{3} \leqslant \frac{2 \varepsilon}{3}<\varepsilon \tag{12}
\end{equation*}
$$

Thus ends the proof.

[^0]: 1. Let $a_{k}:=x_{k}-x_{k-1}$. Then we have $\sum_{k=1}^{n} a_{k}=1$ and try to minimize $U(f, P)=\sum_{1 \leqslant i \leqslant j \leqslant n} a_{i} a_{j}$. Study $2 U(f$, $P)-\left(\sum_{k=1}^{n} a_{k}\right)^{2}$.
