Math 117 Fall 2014 Lecture 37 (Nov. 12, 2014)

Read: Bowman §5.A, 314 Integration §1.

- Riemann Integration.
- We define Riemann integral as follows.

Definition 1. (Partition of an inverval) Let $a, b \in \mathbb{R}, a<b$. A partition of $[a, b]$ is a set $P \subseteq[a, b]$ such that i. P is finite, ii. $a, b \in P$.

Example 2. $\{0,1\},\left\{0, \frac{1}{2}, \frac{2}{3}, 1\right\}$ are partitions of $[0,1] ;\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\},\{0,1,2\}$, $\left\{0, \frac{1}{2}, \frac{2}{3}\right\}$ are not partitions of $[0,1]$.

Definition 3. (Upper/Lower sum) Let $f:[a, b] \mapsto \mathbb{R}$. Let P be a partition of $[a, b]$, denoted as $P=\left\{x_{0}, \ldots, x_{n}\right\}$ with $a=x_{0}<x_{1}<\cdots<x_{n}=b$. Then we define the upper/lower sums as:

$$
\begin{equation*}
U(f, P):=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right) ; \quad L(f, P):=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{k}:=\sup _{\left[x_{k-1}, x_{k}\right]} f(x), \quad m_{k}:=\inf _{\left[x_{k-1}, x_{k}\right]} f(x) . \tag{2}
\end{equation*}
$$

Definition 4. (Upper/Lower integrals) Let $f:[a, b] \mapsto \mathbb{R}$. Define its upper/lower integrals as

$$
\begin{equation*}
U(f):=\inf _{P \text { is a partition for }[a, b]} U(f, P) ; \quad L(f):=\sup _{P \text { is a partition for }[a, b]} L(f, P) . \tag{3}
\end{equation*}
$$

Definition 5. (Riemann Integrability) Let $f:[a, b] \mapsto \mathbb{R}$. Then f is Riemann integrable on $[a, b]$ if and only if $U(f)=L(f) \in \mathbb{R}$. In this case the common value is called the Riemann integral of f over $[a, b]$ (or from a to b) and denoted $\int_{a}^{b} f(x) \mathrm{d} x$.

- Examples.

Example 6. Prove that $f(x)=1$ is integrable on $[0,1]$ and find the integral.
Proof. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be an arbitrary partition with $a=x_{0}<x_{1}<\cdots<x_{n}=b$. Then for every $k \in\{1,2, \ldots, n\}$ we have

$$
\begin{equation*}
\sup _{\left[x_{k-1}, x_{k}\right]} f(x)=\inf _{\left[x_{k-1}, x_{k}\right]} f(x)=1 . \tag{4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
U(f, P)=1 ; \quad L(f, P)=1 \tag{5}
\end{equation*}
$$

As this holds for every partition P, we further have

$$
\begin{equation*}
U(f)=1=L(f) . \tag{6}
\end{equation*}
$$

Thus by definition f is integrable with $\int_{0}^{1} f(x) \mathrm{d} x=1$.
Example 7. Prove that $D(x)=\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$ is not integrable on $[0,1]$.

Proof. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be an arbitrary partition with $a=x_{0}<x_{1}<\cdots<x_{n}=b$. Then for every $k \in\{1,2, \ldots, n\}$ we have

Consequently

$$
\begin{align*}
\sup _{\left[x_{k-1}, x_{k}\right]} f(x)=1 ; & \inf _{\left[x_{k-1}, x_{k}\right]} f(x)=0 \tag{7}\\
U(f, P)=1, & L(f, P)=0 \tag{8}
\end{align*}
$$

As this holds for every partition P, we conclude

$$
\begin{equation*}
U(f)=1, \quad L(f)=0 \tag{9}
\end{equation*}
$$

Since $1 \neq 0 D(x)$ is not integrable on $[0,1]$.
Exercise 1. Prove by definition the integrability of $f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x \leqslant 0\end{array}\right.$ on $[-1,1]$ and find $\int_{-1}^{1} f(x) \mathrm{d} x$.

- Refinement of partition.

DEfinition 8. Let P, Q be partitions of $[a, b]$. Say Q refines P if and only if $P \subseteq Q$.
Example 9. $\{0,1\},\left\{0, \frac{1}{2}, \frac{2}{3}, 1\right\}$ are both partitions of $[0,1]$ and the latter refines the former.

Lemma 10. Let $f:[a, b] \mapsto \mathbb{R}$ and P, Q be partitions of $[a, b]$ with $P \subseteq Q$. Then

$$
\begin{equation*}
U(f, P) \geqslant U(f, Q) ; \quad L(f, P) \leqslant L(f, Q) \tag{10}
\end{equation*}
$$

Proof. We prove the first one and leave the second one as exercise.
Denote $P=\left\{x_{0}, \ldots, x_{n}\right\}$ and $Q=\left\{y_{0}, \ldots, y_{m}\right\}$. As $P \subseteq Q, Q-P$ consists of $k=m-n$ elements, we denote them by $z_{1}, \ldots z_{k}$. Now define

$$
\begin{equation*}
Q_{1}=P \cup\left\{z_{1}\right\}, Q_{2}=P \cup\left\{z_{1}, z_{2}\right\}, \ldots, Q_{k-1}=P \cup\left\{z_{1}, \ldots, z_{k-1}\right\} \tag{11}
\end{equation*}
$$

It suffices to prove

$$
\begin{equation*}
U(f, P) \geqslant U\left(f, Q_{1}\right) \geqslant U\left(f, Q_{2}\right) \geqslant \cdots \geqslant U\left(f, Q_{k-1}\right) \geqslant U(f, Q) \tag{12}
\end{equation*}
$$

It is clear now that it suffices to prove the following: Let $P=\left\{x_{0}, \ldots, x_{n}\right\}$ be an arbitrary partition of $[a, b]$. Let $\tilde{x} \in[a, b]$ be different from x_{0}, \ldots, x_{n}, then

$$
\begin{equation*}
U(f, P) \geqslant U(f, P \cup\{\tilde{x}\}) \tag{13}
\end{equation*}
$$

Let $l \in\{0, \ldots, n-1\}$ be such that $\tilde{x} \in\left(x_{l}, x_{l+1}\right)$. Then as
we have

$$
\begin{equation*}
\sup _{\left[x_{l}, x_{l+1}\right]} f(x) \geqslant \sup _{\left[x_{l}, \tilde{x}\right]} f(x) ; \quad \sup _{\left[x_{l}, x_{l+1}\right]} f(x) \geqslant \sup _{\left[\tilde{x}, x_{l+1}\right]} f(x) \tag{14}
\end{equation*}
$$

$$
\begin{align*}
U(f, P)-U(f, P \cup\{\tilde{x}\})= & \left(\sup _{\left[x_{l}, x_{l+1}\right]} f(x)\right) \cdot\left(x_{l+1}-x_{l}\right) \\
& -\left(\sup _{\left[x_{l}, \tilde{x}\right]} f(x)\right) \cdot\left(\tilde{x}-x_{l}\right) \\
& -\left(\sup _{\left[\tilde{x}, x_{l+1}\right]} f(x)\right) \cdot\left(x_{l+1}-\tilde{x}\right) \\
\geqslant & \left(\sup _{\left[x_{l}, x_{l+1}\right]} f(x)\right) \cdot\left[\left(x_{l+1}-x_{l}\right)-\left(\tilde{x}-x_{l}\right)-\left(x_{l+1}-\tilde{x}\right)\right] \\
= & 0 \tag{15}
\end{align*}
$$

Thus ends the proof.

