MATH 117 FALL 2014 LECTURE 36 (Nov. 7, 2014)

Read: Bowman §4.B — §4.D.

Maximizer and minimizer.

THEOREM 1. Let ¢ € (a, b) be a maximizer (or minimizer) of f over (a,b), that is for all
x € (a,b), f(x)< f(c). If f is differentiable at ¢, then f'(c)=0.

Proof. Let z, < ¢ be such that lim,,_,.x, = ¢. Then as f is differentiable at ¢, we have
f'(c) =limy 00 w Since ¢ is a maximizer, f(z,) < ¢ which leads to w > 0.
By Comparison Theorem we have f/(c¢) = lim,— 00 M > 0. Now let ], > ¢ be such
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that lim,,_, oz, = c. Similar consideration leads to f'(c) =1lim, w < 0. Therefore

f'(e)=0. O

Remark 2. f’(c) = 0 does not necessarily imply ¢ being maximizer of minimizer, as the
example f(z)= x> shows.

COROLLARY 3. Let f be differentiable on (a, b). Then if ¢ € (a, b) is a maximizer (or
minimizer) of f there holds f'(¢)=0.

Finding maximizer/minimizer of f(z) over closed interval [a,b]. Assume f is continuous on
[a,b] and differentiable on (a,b).

1. Solve f’(¢)=0, get solutions ¢y, ..., ¢ € (a,b).

2. Compare f(a), f(b), f(c1),..., f(cx). Find largest and smallest.
Example 4. Find maximum/minimum of f(z)=x3—3x?+1 over [-1,1].

Solution. Solving 0= f'(z) =3 22— 6z gives c; =0,c2=2. As ca¢ (—1,1) we discard it. Now
compare f(0)=1, f(—1)=-3, f(1) =—1 we see that the maximum is 1 and minimum is —3.

Mean Value Theorem.

THEOREM 5. (ROLLE’S THEOREM) Let f satisfy
1. it is continuous on [a,b];
2. it is differentiable on (a,b);
3. f(a)= f(b).
Then there is ¢ € (a,b) such that f'(c)=0.
Proof. As f is continuous on [a, b] it reaches maximum and minimum on [a, b]. There are
two cases.

o There is a maximizer or minimizer in (a,b). Denote it by ¢. Then by Theorem 1 we

have f'(c)=0.
o The only maximizer/minimizer are a,b. Then we have Vz € [a, b], min{ f(a), f(b)} <
f(z)<max{f(a), f(b)}. But f(a)= f(b) so f is constant on (a,b) and consequently
for every c € (a,b) we have f'(c)=0. O
THEOREM 6. (MEAN VALUE THEOREM) Let f be

1. continuous on [a,b],



2. differentiable on (a,b),
then there is c € (a,b) such that f'(c) :—f(bl)):i(“)‘

Proof. Set
f(b) = f(a) (z—a)|. (1)

We easily check that h(x) satisfies the conditions for Rolle’s Theorem. Consequently there
is ¢ € (a,b) such that h'(¢) =0 which is exactly f/(¢) = —f(bl)):i(“) 0

COROLLARY 7. Let f(x) be differentiable on (a,b). Then
o fisincreasing if and only if f'(x) >0 everywhere on (a,b);
o fis decreasing if and only if f'(x) <0 everywhere on (a,b);

o [ s constant if and only if f'(x) =0 everywhere on (a,b).

Proof. We prove the first claim and leave the other two as exercises.

o  “Ouly if”. Let c € (a,b) be arbitrary. As f is increasing, for every z < ¢ we have f(x)<
f(c) and consequently % > 0. Taking limit x — ¢ and applying Comparison

Theorem, we see that f’(c) > 0.
o “If”. Let z,z’ € (a,b) be arbitrary with = <z’.
1. As f is differentiable on (a, b), it is continuous on (a, b) and in particular is
continuous on [z, z];

2. As f is differentiable on (a, b) it is differentiable on (x, x’).
Now apply MVT we have
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Thus ends the proof. O
Exercise 1. Prove or disprove the following:

o If f is strictly increasing on (a,b), then f’(c) >0 for every c€ (a, b);
o If f’(c) >0 for every c€ (a,b), then f is strictly increasing on (a, b).
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