
Math 117 Fall 2014 Lecture 36 (Nov. 7, 2014)

Read: Bowman �4.B � �4.D.

� Maximizer and minimizer.

Theorem 1. Let c 2 (a; b) be a maximizer (or minimizer) of f over (a; b), that is for all
x2 (a; b), f(x)6 f(c). If f is di�erentiable at c, then f 0(c)= 0.

Proof. Let xn < c be such that limn!1xn = c. Then as f is di�erentiable at c, we have
f 0(c) = limn!1

f(xn)¡ f(c)

xn¡ c
. Since c is a maximizer, f(xn)6 c which leads to f(xn)¡ f(c)

xn¡ c
> 0.

By Comparison Theorem we have f 0(c) = limn!1
f(xn)¡ f(c)

xn¡ c
> 0. Now let xn0 > c be such

that limn!1xn= c. Similar consideration leads to f 0(c)= limn!1
f(xn

0 )¡ f(c)

xn
0 ¡ c 6 0. Therefore

f 0(c)= 0. �

Remark 2. f 0(c) = 0 does not necessarily imply c being maximizer of minimizer, as the
example f(x)=x3 shows.

Corollary 3. Let f be di�erentiable on (a; b). Then if c 2 (a; b) is a maximizer (or
minimizer) of f there holds f 0(c)= 0.

� Finding maximizer/minimizer of f(x) over closed interval [a; b]. Assume f is continuous on
[a; b] and di�erentiable on (a; b).

1. Solve f 0(c)= 0, get solutions c1; :::; ck2 (a; b).
2. Compare f(a); f(b); f(c1); :::; f(ck). Find largest and smallest.

Example 4. Find maximum/minimum of f(x)=x3¡ 3x2+1 over [¡1; 1].
Solution. Solving 0= f 0(x)=3 x2¡6 x gives c1=0; c2=2. As c22/ (¡1;1) we discard it. Now
compare f(0)=1; f(¡1)=¡3; f(1)=¡1 we see that the maximum is 1 and minimum is ¡3.

� Mean Value Theorem.

Theorem 5. (Rolle's Theorem) Let f satisfy

1. it is continuous on [a; b];

2. it is di�erentiable on (a; b);

3. f(a)= f(b).

Then there is c2 (a; b) such that f 0(c)= 0.

Proof. As f is continuous on [a; b] it reaches maximum and minimum on [a; b]. There are
two cases.

� There is a maximizer or minimizer in (a; b). Denote it by c. Then by Theorem 1 we
have f 0(c)= 0.

� The only maximizer/minimizer are a; b. Then we have 8x2 [a; b], minff(a); f(b)g6
f(x)6maxff(a); f(b)g. But f(a)= f(b) so f is constant on (a; b) and consequently
for every c2 (a; b) we have f 0(c)= 0. �

Theorem 6. (Mean Value Theorem) Let f be

1. continuous on [a; b],



2. di�erentiable on (a; b),

then there is c2 (a; b) such that f 0(c)= f(b)¡ f(a)

b¡ a .

Proof. Set

h(x): =f(x)¡
�
f(a)+

f(b)¡ f(a)
b¡ a (x¡ a)

�
: (1)

We easily check that h(x) satis�es the conditions for Rolle's Theorem. Consequently there
is c2 (a; b) such that h0(c)= 0 which is exactly f 0(c)= f(b)¡ f(a)

b¡ a . �

Corollary 7. Let f(x) be di�erentiable on (a; b). Then

� f is increasing if and only if f 0(x)> 0 everywhere on (a; b);

� f is decreasing if and only if f 0(x)6 0 everywhere on (a; b);

� f is constant if and only if f 0(x)= 0 everywhere on (a; b).

Proof. We prove the �rst claim and leave the other two as exercises.

� �Only if�. Let c2 (a; b) be arbitrary. As f is increasing, for every x<c we have f(x)6
f(c) and consequently f(x)¡ f(c)

x¡ c > 0. Taking limit x! c and applying Comparison

Theorem, we see that f 0(c)> 0.
� �If�. Let x; x02 (a; b) be arbitrary with x<x0.

1. As f is di�erentiable on (a; b), it is continuous on (a; b) and in particular is
continuous on [x; x0];

2. As f is di�erentiable on (a; b) it is di�erentiable on (x; x0).

Now apply MVT we have

f(x0)¡ f(x)
x0¡x = f 0(c)> 0=) f(x0)> f(x): (2)

Thus ends the proof. �

Exercise 1. Prove or disprove the following:

� If f is strictly increasing on (a; b), then f 0(c)> 0 for every c2 (a; b);

� If f 0(c)> 0 for every c2 (a; b), then f is strictly increasing on (a; b).
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