MATH 117 FALL 2014 HOMEWORK 8

DUE THURSDAY NOV. 13 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Calculate f'(x) for the following functions.

a) (1 PT)
$$f_1(x) := \sqrt{\frac{x^2+1}{x^4+1}};$$

b) (1 PT) $f_2(x) := \arctan(\cos x).$
c) (3 PTS) $f_3(x) := \begin{cases} e^{-1/x} & x > 0\\ 0 & x \leqslant 0 \end{cases}.$

Solution.

a) We have

$$f_1'(x) = \frac{1}{2} \left(\sqrt{\frac{x^2 + 1}{x^4 + 1}} \right)^{-1} \left(\frac{x^2 + 1}{x^4 + 1} \right)' = -\sqrt{\frac{x^4 + 1}{x^2 + 1}} \frac{x \left(x^4 + 2 \, x^2 - 1 \right)}{(x^4 + 1)^2}.$$
 (1)

b) We have

$$f_2'(x) = \frac{(\cos x)'}{1 + (\cos x)^2} = -\frac{\sin x}{1 + (\cos x)^2}.$$
(2)

c) For x < 0, clearly $f'_3(x) = 0$. For x > 0 we have

$$f'_{3}(x) = \left(e^{-1/x}\right)' = x^{-2} e^{-1/x}.$$
(3)

At 0 we have

$$\lim_{x \to 0^{-}} \frac{f_3(x) - f_3(0)}{x - 0} = \lim_{x \to 0^{-}} 0 = 0;$$
(4)

$$\lim_{x \to 0+} \frac{f_3(x) - f_3(0)}{x - 0} = \lim_{x \to 0+} x^{-1} e^{-1/x}.$$
(5)

Now define for x > 0

$$g(x) := (n+1) 2^{-n} \text{ for } x \in \left(\frac{1}{n+1}, \frac{1}{n}\right].$$
 (6)

Clearly we have

$$\forall x > 0, \qquad 0 \leqslant x^{-1} e^{-1/x} \leqslant g(x).$$
 (7)

Now we prove $\lim_{x\to 0+} g(x) = 0$. Let $\varepsilon > 0$ be arbitrary. As $(n+1) 2^{-n} = \frac{n+1}{(1+1)^n} < \frac{n+1}{\binom{n}{2}} = \frac{2(n+1)}{n(n-1)}$ we see that $\lim_{n\to\infty} (n+1) 2^{-n} = 0$. Thus there is $N \in \mathbb{N}$ such that $\forall n \ge N$, $(n+1) 2^{-n} < \varepsilon$. Now set $\delta = 1/N$. For every $0 < x < \delta$, we have $x < \frac{1}{N}$ which means $g(x) = (n+1) 2^{-n}$ for some $n \ge N$. Consequently $|g(x)| < \varepsilon$.

Remark. Those who gave detailed proof of $\lim_{x\to 0^+} \frac{f_3(x) - f_3(0)}{x - 0} = 0$ should receive one extra point.

Application of Squeeze Theorem gives $\lim_{x\to 0+} x^{-1} e^{-1/x} = 0$ and consequently $f'_3(0) = 0$. In summary,

$$f_3'(x) = \begin{cases} x^{-2} e^{-1/x} & x > 0\\ 0 & x \leqslant 0 \end{cases}.$$
(8)

QUESTION 2. (5 PTS) Find all $k \in \mathbb{Z}$ such that $|x|^k$ is differentiable everywhere on \mathbb{R} . Justify your claim.

Solution. We claim that $|x|^k$ is differentiable everywhere on \mathbb{R} if and only if $k \ge 2$ or k = 0.

- $|x|^k$ is not differentiable everywhere on \mathbb{R} if k < 0. This is obvious as when k < 0 the function is not even defined at x = 0 and thus cannot be differentiable there.
- $|x|^k$ is differentiable everywhere on \mathbb{R} if k=0. When k=0 we have $|x|^k=1$ for all $x \in \mathbb{R}$ and differentiability follows.
- $|x|^k$ is not differentiable at 0 if k = 1. When k = 1 we have $|x|^k = \begin{cases} x & x > 0 \\ -x & x \leq 0 \end{cases}$. At a = 0 we have

$$\frac{f(x) - f(a)}{x - a} = \begin{cases} 1 & x > 0\\ -1 & x < 0 \end{cases}.$$
(9)

Thus $\lim_{x\to 0^+} \frac{f(x) - f(0)}{x - 0} = 1 \neq -1 = \lim_{x\to 0^-} \frac{f(x) - f(0)}{x - 0}$ and it follows that $\lim_{x\to 0^+} \frac{f(x) - f(0)}{x - 0}$ does not exist. Consequently |x| is not differentiable at x = 0.

- $|x|^k$ is differentiable everywhere on \mathbb{R} for $k \ge 2$ even. In this case we have $|x|^k = x^k$ for all $x \in \mathbb{R}$ and is differentiable everywhere.
- $|x|^k$ is differentiable everywhere on \mathbb{R} for $k \ge 2$ odd. In this case we have $|x|^k = \begin{cases} x^k & x > 0 \\ 0 & x = 0 \end{cases}$ = Sign(x) x^k where the Signum function Sign(x) := $\begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$. It is clear $-x^k & x < 0$

 $\int -x^k x < 0$ $\int -1 x < 0$ that Sign(x) is differentiable at all $x \neq 0$. Consequently $|x|^k$ is differentiable at every $x \neq 0$. At a = 0 we check

$$\lim_{x \to 0+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0+} x^{k-1} = 0; \quad \lim_{x \to 0-} \frac{f(x) - f(0)}{x} = \lim_{x \to 0-} (-x^{k-1}) = 0.$$
(10)

Therefore $|x|^k$ is also differentiable at 0 with derivative 0.

QUESTION 3. (5 PTS) Let $f(x) = 3x - \sin x$.

- a) (1 PT) Prove that $f: \mathbb{R} \mapsto \mathbb{R}$ is one-to-one;
- b) (2 PTS) Prove that $f: \mathbb{R} \mapsto \mathbb{R}$ is onto.
- c) (2 PTS) Let $g: \mathbb{R} \mapsto \mathbb{R}$ be the inverse function of f, calculate g'(0).

Proof. First clearly f(x) is differentiable everywhere on \mathbb{R} and therefore is continuous everywhere on \mathbb{R} .

a) Let $x, y \in \mathbb{R}$ with x < y. By MVT we have there is $c \in (x, y)$ such that

$$|f(x) - f(y)| = |f'(c)| |x - y| = |3 - \cos c| |x - y| \ge 2 |x - y| > 0.$$
(11)

Therefore f is one-to-one.

b) Let $s \in \mathbb{R}$ be arbitrary. Then there are $a, b \in \mathbb{R}$ such that 3a - 1 > s > 3b + 1. Now we have

$$f(a) = 3 a - \sin a \ge 3 a - 1 > s; \quad f(b) = 3 b - \sin b < 3 b + 1 < s.$$
(12)

By IVT there is c between a, b such that f(c) = s. So f is onto.

c) We have $g'(0) = \frac{1}{f'(x_0)}$ where $f(x_0) = 0$. We notice that f(0) = 0 so $x_0 = 0$ since f is one-toone. Consequently $g'(0) = \frac{1}{f'(0)} = \frac{1}{2}$.

QUESTION 4. (5 PTS) Find a bounded function f(x) which is differentiable everywhere on \mathbb{R} yet f'(x) is unbounded on \mathbb{R} . Justify your claim.

Solution. Let $f(x) = \sin(e^x)$. Then we have $|f(x)| \leq 1$ so f(x) is bounded on \mathbb{R} . As f(x) is the composition of two everywhere differentiable functions $\sin x$ and e^x , f(x) is differentiable everywhere on \mathbb{R} . Finally, we calculate $f'(x) = e^x \cos(e^x)$. Let M > 0 be arbitrary. Take $n \in \mathbb{N}$ such that $2n\pi > M$. Then we have $|f(\ln(2n\pi))| = 2n\pi > M$. Therefore f'(x) is unbounded on \mathbb{R} .