Math 117 Fall 2014 Homework 8

Due Thursday Nov. 13 3pm in Assignment Box

Question 1. (5 Pts) Calculate $f^{\prime}(x)$ for the following functions.
a) $(1 \mathrm{PT}) f_{1}(x):=\sqrt{\frac{x^{2}+1}{x^{4}+1}}$;
b) $(1 \mathrm{PT}) f_{2}(x):=\arctan (\cos x)$.
c) $(3 \mathrm{PTS}) f_{3}(x):=\left\{\begin{array}{ll}e^{-1 / x} & x>0 \\ 0 & x \leqslant 0\end{array}\right.$.

Solution.

a) We have

$$
\begin{equation*}
f_{1}^{\prime}(x)=\frac{1}{2}\left(\sqrt{\frac{x^{2}+1}{x^{4}+1}}\right)^{-1}\left(\frac{x^{2}+1}{x^{4}+1}\right)^{\prime}=-\sqrt{\frac{x^{4}+1}{x^{2}+1}} \frac{x\left(x^{4}+2 x^{2}-1\right)}{\left(x^{4}+1\right)^{2}} . \tag{1}
\end{equation*}
$$

b) We have

$$
\begin{equation*}
f_{2}^{\prime}(x)=\frac{(\cos x)^{\prime}}{1+(\cos x)^{2}}=-\frac{\sin x}{1+(\cos x)^{2}} . \tag{2}
\end{equation*}
$$

c) For $x<0$, clearly $f_{3}^{\prime}(x)=0$. For $x>0$ we have

$$
\begin{equation*}
f_{3}^{\prime}(x)=\left(e^{-1 / x}\right)^{\prime}=x^{-2} e^{-1 / x} . \tag{3}
\end{equation*}
$$

At 0 we have

$$
\begin{equation*}
\lim _{x \rightarrow 0-} \frac{f_{3}(x)-f_{3}(0)}{x-0}=\lim _{x \rightarrow 0-} 0=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0+} \frac{f_{3}(x)-f_{3}(0)}{x-0}=\lim _{x \rightarrow 0+} x^{-1} e^{-1 / x} . \tag{5}
\end{equation*}
$$

Now define for $x>0$

$$
\begin{equation*}
g(x):=(n+1) 2^{-n} \quad \text { for } \quad x \in\left(\frac{1}{n+1}, \frac{1}{n}\right] . \tag{6}
\end{equation*}
$$

Clearly we have

$$
\begin{equation*}
\forall x>0, \quad 0 \leqslant x^{-1} e^{-1 / x} \leqslant g(x) . \tag{7}
\end{equation*}
$$

Now we prove $\lim _{x \rightarrow 0+} g(x)=0$. Let $\varepsilon>0$ be arbitrary. As $(n+1) 2^{-n}=\frac{n+1}{(1+1)^{n}}<\frac{n+1}{\binom{n}{2}}=$ $\frac{2(n+1)}{n(n-1)}$ we see that $\lim _{n \rightarrow \infty}(n+1) 2^{-n}=0$. Thus there is $N \in \mathbb{N}$ such that $\forall n \geqslant N$, $(n+1) 2^{-n}<\varepsilon$. Now set $\delta=1 / N$. For every $0<x<\delta$, we have $x<\frac{1}{N}$ which means $g(x)=(n+1) 2^{-n}$ for some $n \geqslant N$. Consequently $|g(x)|<\varepsilon$.

Remark. Those who gave detailed proof of $\lim _{x \rightarrow 0+} \frac{f_{3}(x)-f_{3}(0)}{x-0}=0$ should receive one extra point.

Application of Squeeze Theorem gives $\lim _{x \rightarrow 0+} x^{-1} e^{-1 / x}=0$ and consequently $f_{3}^{\prime}(0)=0$. In summary,

$$
f_{3}^{\prime}(x)=\left\{\begin{array}{ll}
x^{-2} e^{-1 / x} & x>0 \tag{8}\\
0 & x \leqslant 0
\end{array} .\right.
$$

Question 2. (5 PTS) Find all $k \in \mathbb{Z}$ such that $|x|^{k}$ is differentiable everywhere on \mathbb{R}. Justify your claim.

Solution. We claim that $|x|^{k}$ is differentiable everywhere on \mathbb{R} if and only if $k \geqslant 2$ or $k=0$.

- $|x|^{k}$ is not differentiable everywhere on \mathbb{R} if $k<0$. This is obvious as when $k<0$ the function is not even defined at $x=0$ and thus cannot be differentiable there.
- $|x|^{k}$ is differentiable everywhere on \mathbb{R} if $k=0$. When $k=0$ we have $|x|^{k}=1$ for all $x \in \mathbb{R}$ and differentibility follows.
- $|x|^{k}$ is not differentiable at 0 if $k=1$. When $k=1$ we have $|x|^{k}=\left\{\begin{array}{ll}x & x>0 \\ -x & x \leqslant 0\end{array}\right.$. At $a=0$ we have

$$
\frac{f(x)-f(a)}{x-a}=\left\{\begin{array}{ll}
1 & x>0 \tag{9}\\
-1 & x<0
\end{array}\right. \text {. }
$$

Thus $\lim _{x \rightarrow 0+} \frac{f(x)-f(0)}{x-0}=1 \neq-1=\lim _{x \rightarrow 0-} \frac{f(x)-f(0)}{x-0}$ and it follows that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ does not exist. Consequently $|x|$ is not differentiable at $x=0$.

- $|x|^{k}$ is differentiable everywhere on \mathbb{R} for $k \geqslant 2$ even. In this case we have $|x|^{k}=x^{k}$ for all $x \in \mathbb{R}$ and is differentiable everywhere.
- $|x|^{k}$ is differentiable everywhere on \mathbb{R} for $k \geqslant 2$ odd. In this case we have $|x|^{k}=$ $\left\{\begin{array}{ll}x^{k} & x>0 \\ 0 & x=0 \\ -x^{k} & x<0\end{array}=\operatorname{Sign}(x) x^{k}\right.$ where the Signum function $\operatorname{Sign}(x):=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right.$. It is clear that $\operatorname{Sign}(x)$ is differentiable at all $x \neq 0$. Consequently $|x|^{k}$ is differentiable at every $x \neq$ 0 . At $a=0$ we check

$$
\begin{equation*}
\lim _{x \rightarrow 0+} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0+} x^{k-1}=0 ; \quad \lim _{x \rightarrow 0-} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0-}\left(-x^{k-1}\right)=0 . \tag{10}
\end{equation*}
$$

Therefore $|x|^{k}$ is also differentiable at 0 with derivative 0 .
Question 3. (5 Pts) Let $f(x)=3 x-\sin x$.
a) (1 PT) Prove that $f: \mathbb{R} \mapsto \mathbb{R}$ is one-to-one;
b) (2 PTS) Prove that $f: \mathbb{R} \mapsto \mathbb{R}$ is onto.
c) (2 PTs) Let $g: \mathbb{R} \mapsto \mathbb{R}$ be the inverse function of f, calculate $g^{\prime}(0)$.

Proof. First clearly $f(x)$ is differentiable everywhere on \mathbb{R} and therefore is continuous everywhere on \mathbb{R}.
a) Let $x, y \in \mathbb{R}$ with $x<y$. By MVT we have there is $c \in(x, y)$ such that

$$
\begin{equation*}
|f(x)-f(y)|=\left|f^{\prime}(c)(x-y)\right|=\left|f^{\prime}(c)\right||x-y|=|3-\cos c||x-y| \geqslant 2|x-y|>0 \tag{11}
\end{equation*}
$$

Therefore f is one-to-one.
b) Let $s \in \mathbb{R}$ be arbitrary. Then there are $a, b \in \mathbb{R}$ such that $3 a-1>s>3 b+1$. Now we have

$$
\begin{equation*}
f(a)=3 a-\sin a \geqslant 3 a-1>s ; \quad f(b)=3 b-\sin b<3 b+1<s . \tag{12}
\end{equation*}
$$

By IVT there is c between a, b such that $f(c)=s$. So f is onto.
c) We have $g^{\prime}(0)=\frac{1}{f^{\prime}\left(x_{0}\right)}$ where $f\left(x_{0}\right)=0$. We notice that $f(0)=0$ so $x_{0}=0$ since f is one-toone. Consequently $g^{\prime}(0)=\frac{1}{f^{\prime}(0)}=\frac{1}{2}$.

Question 4. (5 PTs) Find a bounded function $f(x)$ which is differentiable everywhere on \mathbb{R} yet $f^{\prime}(x)$ is unbounded on \mathbb{R}. Justify your claim.

Solution. Let $f(x)=\sin \left(e^{x}\right)$. Then we have $|f(x)| \leqslant 1$ so $f(x)$ is bounded on \mathbb{R}. As $f(x)$ is the composition of two everywhere differentiable functions $\sin x$ and $e^{x}, f(x)$ is differentiable everywhere on \mathbb{R}. Finally, we calculate $f^{\prime}(x)=e^{x} \cos \left(e^{x}\right)$. Let $M>0$ be arbitrary. Take $n \in \mathbb{N}$ such that $2 n \pi>M$. Then we have $|f(\ln (2 n \pi))|=2 n \pi>M$. Therefore $f^{\prime}(x)$ is unbounded on \mathbb{R}.

