Math 117 Fall 2014 Lecture 35 (Nov. 6, 2014)

Read: Bowman §4.I, 4.J.

- Derivative of inverse function.

Theorem 1. Let $f:[a, b] \mapsto \mathbb{R}$ be invertible, and satisfies

- f is differentiable at $c \in(a, b)$;
- $\quad f^{\prime}(c) \neq 0$;
- f is continuous on $[a, b]$.

Then its inverse function g is differentiable at $f(c)$ and furthermore $g^{\prime}(f(c))=\frac{1}{f^{\prime}(c)}$.
Proof. It suffices to prove the following: Let $y_{n} \longrightarrow f(c)$ be arbitrary satisfying $\forall n \in \mathbb{N}$, $y_{n} \neq f(c)$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g\left(y_{n}\right)-g(f(c))}{y_{n}-f(c)}=\frac{1}{f^{\prime}(c)} . \tag{1}
\end{equation*}
$$

As f is invertible, there are unique x_{n} 's such that $f\left(x_{n}\right)=y_{n}$ and $x_{n} \neq c$. Furthermore as f is continuous on $[a, b]$, so is g and consequently

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} g\left(y_{n}\right)=\lim _{n \rightarrow \infty} g(f(c))=g(c) . \tag{2}
\end{equation*}
$$

Thus a consequence of $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)$ is $\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c}=f^{\prime}(c)$. Finally, as $f^{\prime}(c) \neq 0$ we have

$$
\begin{equation*}
\frac{1}{f^{\prime}(c)}=\lim _{n \rightarrow \infty} \frac{x_{n}-c}{f\left(x_{n}\right)-f(c)}=\lim _{n \rightarrow \infty} \frac{g\left(y_{n}\right)-g(f(c))}{y_{n}-f(c)} . \tag{3}
\end{equation*}
$$

Therefore $g^{\prime}(f(c))=\frac{1}{f^{\prime}(c)}$.
Exercise 1. Find the theorem in our notes guaranteeing it is enough to prove "Let $y_{n} \longrightarrow f(c)$ be arbitrary satisfying $\forall n \in \mathbb{N}, y_{n} \neq f(c)$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g\left(y_{n}\right)-g(f(c))}{y_{n}-f(c)}=\frac{1}{f^{\prime}(c)} . " \tag{4}
\end{equation*}
$$

Remark 2. The continuity assumption on f cannot be removed.
Problem 1. Find an invertible function $f:[-1,1] \mapsto[-1,1]$ with $f(0)=0$ such that f is differentible at 0 but its inverse function g is not continuous at 0 .

- Calculation of derivative of inverse functions.

Example 3. Calculate $(\ln x)^{\prime}$.
Solution. Let $y(x):=\ln x$. Then $x=e^{y(x)}$. Taking derivative on both sides, we have

$$
\begin{equation*}
1=e^{y(x)} y^{\prime}(x) \Longrightarrow y^{\prime}(x)=\frac{1}{e^{y(x)}}=\frac{1}{x} . \tag{5}
\end{equation*}
$$

Example 4. Calculate $(\arcsin x)^{\prime}$.
Solution. Let $y(x):=\arcsin x$. Then $x=\sin y(x)$. Taking derivative on both sides we have

$$
\begin{equation*}
1=[\cos y(x)] y^{\prime}(x) \Longrightarrow y^{\prime}(x)=\frac{1}{\cos y(x)} . \tag{6}
\end{equation*}
$$

As $x=\sin y(x)$, we have $(\cos y(x))^{2}+x^{2}=1$. Furthermore as arcsin has domain $[-1,1]$ and range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, there holds $\cos y(x) \geqslant 0$ and consequently

$$
\begin{equation*}
y^{\prime}(x)=\frac{1}{\cos y(x)}=\frac{1}{\sqrt{1-x^{2}}} . \tag{7}
\end{equation*}
$$

Exercise 2. Calculate $(\arccos x)^{\prime}$.
Example 5. Calculate $(\tan x)^{\prime}$.
Solution. We have

$$
\begin{equation*}
(\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cos x+\sin x(\cos x)^{\prime}}{(\cos x)^{2}}=\frac{1}{(\cos x)^{2}} . \tag{8}
\end{equation*}
$$

Example 6. Calculate $(\arctan x)^{\prime}$.
Solution. Let $y(x)=\arctan x$. We have $x=\tan y(x)$ and therefore

Notice

$$
\begin{equation*}
1=(\tan y(x))^{\prime}=\frac{1}{[\cos y(x)]^{2}} y^{\prime}(x) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{[\cos y(x)]^{2}}=1+(\tan y(x))^{2}=1+x^{2} \tag{10}
\end{equation*}
$$

Therefore $(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$.
Example 7. Let $f(x):=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Then $f(x)$ is differentiable everywhere.
Solution. At $a \neq 0$ we have x^{2} and $\frac{1}{x}$ differentiable at a and $\sin x$ differentiable at $1 / a$. Therefore $f(x)$ is differentiable at a. At $a=0$ we apply definition

$$
\begin{equation*}
\frac{f(x)-f(0)}{x-0}=x \sin \frac{1}{x} \tag{11}
\end{equation*}
$$

whose limit is 0 thanks to Squeeze. Therefore $f^{\prime}(0)=0$.

