MATH 117 FALL 2014 LECTURE 34 (Nov. 5, 2014)

Read: Bowman §4.1, 4.J.

e Derivative as function.
If we let A:={a€R)| f is differentiable at a }, then f":ar f’(a) can be seen as a function
with domain A and range R. Thus we often simply write f/(z), as in (%)’ =322

e Exponential.

PROPOSITION 1. The exponential function e® is differentiable everywhere if and only if

= ;1 exists and is finite. Furthermore if we denote this limit by co, then (e*) =cge”.

limx_>0+

Exercise 1. Prove the above proposition.

e’ —1

T

PROPOSITION 2. limg_,0+ =1.

Proof. We first prove this limit exists, then prove it is 1.

e?—1 .
exists.

o limg_o+ —
We will prove the function
for all >0, the limit exists.

Define the function yp(x) :=

e’ —1

.. . . . e’ —1
is increasing on (0, 4+00), since obviously —> 0

bm; L for arbitrary b> 1. It suffices to prove that wp(x)

is increasing on (0, +00). We prove this in three steps.

1. ¢p(z) is increasing on N. It suffices to prove

VneN, wp(n+1)> pp(n). (1)
We notice, as b> 1, b" > bn71+bniz+m+b+1. Consequently
e S (e O (i A i )
b —1 (b—1) 024+ 1)
N bn—1+b"b—n2+---+1+1>n:1 2)

from which (1) immediately follows.

2. @p(x) is increasing on QT (positive rational numbers).

Let £ 2 ¢ %, then £ > £ is equivalent to the existence of m,n,n’ € N
qJ q/ Y q q/

p_n p _n / . n n’
such that T T m and n >n’. Thus it suffices to prove cpb(m) > g0b<5)
for every such m, n, n’. But this immediately follows from the previous step
and the fact gpb(%) = y1/m(n).

3. op() is increasing on R™ (positive rational numbers).
Let x, 2’ € RT be arbitrary with = > z/. Then there are sequences {z,},
{z;,} QT such that lim,,—,corp, =2, lim, oz, =2', and Vn € N, x, >z, 2, < 2.
As @p(x) is continuous, we have

o) = lim py(za) > lim gp(an) = Po(z"). (3)

Therefore co=lim, o4 @e(x) exists.



el/m_1

-1
exists, it equals lim,, oo T

o =1. As the limit 11]{][12;_)04r

— c¢o=1. Recall that e:=1lim,, . (1 + %)n and {(1 + %)n} is increasing. Thus
for every m € N, we have

> (1 4 i) (4)
m
which is equivalent to
il N 5

Taking limit m — oo and applying Comparison Theorem we have co> 1.
1 1
—  ¢p< 1. Recall that e =lim,, .o <1 + %)Wr and {( + = )n+ } is decreasing.

Thus for every k€ N, we have e < (1 + - )kH Thus we have

o o)
_ m:(<1+%)1:1>’““_1] ()
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Now taking limit m — oo and apply Comparison Theorem, we have

1/m k+1

. e -1 . kE+1 k+1y 1 1 1 1
— £ < rr- 4 - -

“ W%E}cl)o 1/m \mh_lgo{ k +< 2 )k2m+ +<k‘> mk}

k+1

2 (11)
Now taking limit k — oo for c¢g < k—zl and apply Comparison Theorem, we have
co< 1.
As cp>1 and ¢g <1, we have cg=1.
Thus ends the proof. O

Exercise 2. Make sure you understand every step of (6 — 10).
Exercise 3. Prove lim,,_. o {k+1 + (’“Ll) %%4’ g (%)kﬂ %} :L;:l_

Chain Rule.

THEOREM 3. Let f be differentiable at a € R and g be differentiable at f(a). Then the
composite function go f is differentiable at a and (go f)'(a)=g'(f(a))- f'(a).

Proof. Define



Then we have

Vz+a, (gOf)(xa);:ElgOf)(a):G(f(x))'f(xa);:g:(a)' (13)
As G, f are continuous, we have lim,_.,G(f(z)) =G(f(a))=g¢'(f(a)), as f is differentiable
at a, we have limx_,aLZ:(a) = f'(a). Thus

T —

tim 2 N@ = (901 _ i [ g f(a))- LE =L@ | _ i 4a)) - () (14)

r—a r—a r—a r—a

and the conclusion follows. O

Exercise 4. Prove G(y) is continuous.

Exercise 5. Prove (13).
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