
Math 117 Fall 2014 Lecture 34 (Nov. 5, 2014)

Read: Bowman �4.I, 4.J.

� Derivative as function.
If we let A := fa2Rj f is di�erentiable at ag, then f 0:a 7! f 0(a) can be seen as a function

with domain A and range R. Thus we often simply write f 0(x), as in (x3)0=3x2.

� Exponential.

Proposition 1. The exponential function ex is di�erentiable everywhere if and only if
limx!0+

ex¡ 1
x

exists and is �nite. Furthermore if we denote this limit by c0, then (ex)0=c0 ex.

Exercise 1. Prove the above proposition.

Proposition 2. limx!0+
ex¡ 1
x

=1.

Proof. We �rst prove this limit exists, then prove it is 1.

� limx!0+
ex¡ 1
x

exists.
We will prove the function ex¡ 1

x
is increasing on (0;+1), since obviously ex¡ 1

x
>0

for all x> 0, the limit exists.
De�ne the function 'b(x) :=

bx¡ 1
x

for arbitrary b>1. It su�ces to prove that 'b(x)
is increasing on (0;+1). We prove this in three steps.

1. 'b(x) is increasing on N. It su�ces to prove

8n2N; 'b(n+1)> 'b(n): (1)

We notice, as b> 1, bn> bn¡1+ bn¡2+ ���+ b+1

n
. Consequently

bn+1¡ 1
bn¡ 1 = (b¡ 1) (bn+ bn¡1+ ���+1)

(b¡ 1) (bn¡1+ bn¡2+ ���+1)

= bn

bn¡1+ bn¡2+ ���+1
+1> n+1

n
(2)

from which (1) immediately follows.

2. 'b(x) is increasing on Q+ (positive rational numbers).

Let p

q
;
p0

q 0
2Q+, then p

q
>

p0

q 0
is equivalent to the existence of m; n; n0 2N

such that p

q
= n

m
;
p0

q 0
= n0

m
and n>n0. Thus it su�ces to prove 'b

¡ n

m

�
>'b

�
n0

m

�
for every such m; n; n0. But this immediately follows from the previous step
and the fact 'b

¡ n

m

�
= 'b1/m(n).

3. 'b(x) is increasing on R+ (positive rational numbers).
Let x; x0 2 R+ be arbitrary with x > x0. Then there are sequences fxng;

fxn0 g�Q+ such that limn!1xn=x; limn!1xn
0 =x0, and 8n2N;xn>x;xn0 <x0.

As 'b(x) is continuous, we have

'b(x)= lim
n!1

'b(xn)> lim
n!1

'b(xn0 )= �b(x0): (3)

Therefore c0= limx!0+'e(x) exists.



� c0=1. As the limit limx!0+
ex¡ 1
x

exists, it equals limm!1
e1/m¡ 1
1/m

.

¡ c0>1. Recall that e := limn!1

�
1+ 1

n

�n
and

n�
1+ 1

n

�no
is increasing. Thus

for every m2N, we have

e>

�
1+ 1

m

�m
(4)

which is equivalent to
e1/m¡ 1
1/m

> 1: (5)

Taking limit m!1 and applying Comparison Theorem we have c0> 1.

¡ c06 1. Recall that e= limn!1

�
1 + 1

n

�
n+1

and
n�

1 + 1

n

�
n+1

o
is decreasing.

Thus for every k2N, we have e<
�
1+ 1

k

�
k+1

. Thus we have

e1/m¡ 1
1/m

< m

��
1+ 1

k

�
k+1

m ¡ 1
�

(6)

= m

���
1+ 1

k

�
1/m

�
k+1

¡ 1
�

(7)

< m

��
1+ 1

mk

�
k+1

¡ 1
�

(8)

= m

��
1+ k+1

mk
+
�
k+1
2

�� 1
mk

�
2

+ ���+
�

1
mk

�
k+1

�
¡1

�
(9)

= k+1
k

+
�
k+1
2

� 1
k2

1
m
+ ���+

�
1
k

�
k+1 1

mk
: (10)

Now taking limit m!1 and apply Comparison Theorem, we have

c0 = lim
m!1

e1/m¡ 1
1/m

6 lim
m!1

�
k+1
k

+
�
k+1
2

� 1
k2

1
m
+ ��� +

�
1
k

�
k+1 1

mk

�
=

k+1
k

: (11)

Now taking limit k!1 for c06 k+1

k
and apply Comparison Theorem, we have

c06 1.
As c0> 1 and c06 1, we have c0=1.

Thus ends the proof. �

Exercise 2. Make sure you understand every step of (6 � 10).

Exercise 3. Prove limm!1

n
k+1

k
+

�
k+1
2

� 1

k2
1

m
+ ���+

¡ 1
k

�
k+1 1

mk

o
=

k+1

k
:

� Chain Rule.

Theorem 3. Let f be di�erentiable at a 2 R and g be di�erentiable at f(a). Then the
composite function g � f is di�erentiable at a and (g � f)0(a)= g 0(f(a)) � f 0(a).

Proof. De�ne

G(y) :=

8<: g(y)¡ g(f(a))
y¡ f(a)

y=/ f(a)

g 0(f(a)) y= f(a)
: (12)



Then we have

8x=/ a; (g � f)(x)¡ (g � f)(a)
x¡ a =G(f(x)) � f(x)¡ f(a)

x¡ a : (13)

As G; f are continuous, we have limx!aG(f(x))=G(f(a))= g 0(f(a)), as f is di�erentiable
at a, we have limx!a

f(x)¡ f(a)

x¡ a = f 0(a). Thus

lim
x!a

(g � f)(x)¡ (g � f)(a)
x¡ a = lim

x!a

�
G(f(x)) � f(x)¡ f(a)

x¡ a

�
= g 0(f(a)) � f 0(a) (14)

and the conclusion follows. �

Exercise 4. Prove G(y) is continuous.

Exercise 5. Prove (13).
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