Math 117 Fall 2014 Lecture 34 (Nov. 5, 2014)

Read: Bowman §4.I, 4.J.

- Derivative as function.

If we let $A:=\{a \in \mathbb{R} \mid f$ is differentiable at $a\}$, then $f^{\prime}: a \mapsto f^{\prime}(a)$ can be seen as a function with domain A and range \mathbb{R}. Thus we often simply write $f^{\prime}(x)$, as in $\left(x^{3}\right)^{\prime}=3 x^{2}$.

- Exponential.

Proposition 1. The exponential function e^{x} is differentiable everywhere if and only if $\lim _{x \rightarrow 0+} \frac{e^{x}-1}{x}$ exists and is finite. Furthermore if we denote this limit by c_{0}, then $\left(e^{x}\right)^{\prime}=c_{0} e^{x}$.

Exercise 1. Prove the above proposition.
Proposition 2. $\lim _{x \rightarrow 0+} \frac{e^{x}-1}{x}=1$.
Proof. We first prove this limit exists, then prove it is 1.

- $\lim _{x \rightarrow 0+} \frac{e^{x}-1}{x}$ exists.

We will prove the function $\frac{e^{x}-1}{x}$ is increasing on $(0,+\infty)$, since obviously $\frac{e^{x}-1}{x}>0$ for all $x>0$, the limit exists.

Define the function $\varphi_{b}(x):=\frac{b^{x}-1}{x}$ for arbitrary $b>1$. It suffices to prove that $\varphi_{b}(x)$ is increasing on $(0,+\infty)$. We prove this in three steps.

1. $\varphi_{b}(x)$ is increasing on \mathbb{N}. It suffices to prove

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \varphi_{b}(n+1)>\varphi_{b}(n) . \tag{1}
\end{equation*}
$$

We notice, as $b>1, b^{n}>\frac{b^{n-1}+b^{n-2}+\cdots+b+1}{n}$. Consequently

$$
\begin{align*}
\frac{b^{n+1}-1}{b^{n}-1} & =\frac{(b-1)\left(b^{n}+b^{n-1}+\cdots+1\right)}{(b-1)\left(b^{n-1}+b^{n-2}+\cdots+1\right)} \\
& =\frac{b^{n}}{b^{n-1}+b^{n-2}+\cdots+1}+1>\frac{n+1}{n} \tag{2}
\end{align*}
$$

from which (1) immediately follows.
2. $\varphi_{b}(x)$ is increasing on \mathbb{Q}^{+}(positive rational numbers).

Let $\frac{p}{q}, \frac{p^{\prime}}{q^{\prime}} \in \mathbb{Q}^{+}$, then $\frac{p}{q}>\frac{p^{\prime}}{q^{\prime}}$ is equivalent to the existence of $m, n, n^{\prime} \in \mathbb{N}$ such that $\frac{p}{q}=\frac{n}{m}, \frac{p^{\prime}}{q^{\prime}}=\frac{n^{\prime}}{m}$ and $n>n^{\prime}$. Thus it suffices to prove $\varphi_{b}\left(\frac{n}{m}\right)>\varphi_{b}\left(\frac{n^{\prime}}{m}\right)$ for every such m, n, n^{\prime}. But this immediately follows from the previous step and the fact $\varphi_{b}\left(\frac{n}{m}\right)=\varphi_{b^{1 / m}}(n)$.
3. $\varphi_{b}(x)$ is increasing on \mathbb{R}^{+}(positive rational numbers).

Let $x, x^{\prime} \in \mathbb{R}^{+}$be arbitrary with $x>x^{\prime}$. Then there are sequences $\left\{x_{n}\right\}$, $\left\{x_{n}^{\prime}\right\} \subset \mathbb{Q}^{+}$such that $\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} x_{n}^{\prime}=x^{\prime}$, and $\forall n \in \mathbb{N}, x_{n}>x, x_{n}^{\prime}<x^{\prime}$. As $\varphi_{b}(x)$ is continuous, we have

$$
\begin{equation*}
\varphi_{b}(x)=\lim _{n \rightarrow \infty} \varphi_{b}\left(x_{n}\right) \geqslant \lim _{n \rightarrow \infty} \varphi_{b}\left(x_{n}^{\prime}\right)=\phi_{b}\left(x^{\prime}\right) . \tag{3}
\end{equation*}
$$

Therefore $c_{0}=\lim _{x \rightarrow 0+} \varphi_{e}(x)$ exists.

- $c_{0}=1$. As the limit $\lim _{x \rightarrow 0+} \frac{e^{x}-1}{x}$ exists, it equals $\lim _{m \rightarrow \infty} \frac{e^{1 / m}-1}{1 / m}$.
$-\quad c_{0} \geqslant 1$. Recall that $e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ and $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is increasing. Thus for every $m \in \mathbb{N}$, we have

$$
\begin{equation*}
e>\left(1+\frac{1}{m}\right)^{m} \tag{4}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{e^{1 / m}-1}{1 / m}>1 \tag{5}
\end{equation*}
$$

Taking limit $m \rightarrow \infty$ and applying Comparison Theorem we have $c_{0} \geqslant 1$.
$-\quad c_{0} \leqslant 1$. Recall that $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+1}$ and $\left\{\left(1+\frac{1}{n}\right)^{n+1}\right\}$ is decreasing. Thus for every $k \in \mathbb{N}$, we have $e<\left(1+\frac{1}{k}\right)^{k+1}$. Thus we have

$$
\begin{align*}
\frac{e^{1 / m}-1}{1 / m} & <m\left[\left(1+\frac{1}{k}\right)^{\frac{k+1}{m}}-1\right] \tag{6}\\
& =m\left[\left(\left(1+\frac{1}{k}\right)^{1 / m}\right)^{k+1}-1\right] \tag{7}\\
& <m\left[\left(1+\frac{1}{m k}\right)^{k+1}-1\right] \tag{8}\\
& =m\left[\left(1+\frac{k+1}{m k}+\binom{k+1}{2}\left(\frac{1}{m k}\right)^{2}+\cdots+\left(\frac{1}{m k}\right)^{k+1}\right)-1\right] \tag{9}\\
& =\frac{k+1}{k}+\binom{k+1}{2} \frac{1}{k^{2}} \frac{1}{m}+\cdots+\left(\frac{1}{k}\right)^{k+1} \frac{1}{m^{k}} . \tag{10}
\end{align*}
$$

Now taking limit $m \rightarrow \infty$ and apply Comparison Theorem, we have

$$
\begin{align*}
& c_{0}=\lim _{m \rightarrow \infty} \frac{e^{1 / m}-1}{1 / m} \leqslant \lim _{m \rightarrow \infty}\left\{\frac{k+1}{k}+\binom{k+1}{2} \frac{1}{k^{2}} \frac{1}{m}+\cdots+\left(\frac{1}{k}\right)^{k+1} \frac{1}{m^{k}}\right\}= \\
& \frac{k+1}{k} \tag{11}
\end{align*}
$$

Now taking limit $k \rightarrow \infty$ for $c_{0} \leqslant \frac{k+1}{k}$ and apply Comparison Theorem, we have $c_{0} \leqslant 1$.
As $c_{0} \geqslant 1$ and $c_{0} \leqslant 1$, we have $c_{0}=1$.
Thus ends the proof.
Exercise 2. Make sure you understand every step of ($6-10$).
Exercise 3. Prove $\lim _{m \rightarrow \infty}\left\{\frac{k+1}{k}+\binom{k+1}{2} \frac{1}{k^{2}} \frac{1}{m}+\cdots+\left(\frac{1}{k}\right)^{k+1} \frac{1}{m^{k}}\right\}=\frac{k+1}{k}$.

- Chain Rule.

Theorem 3. Let f be differentiable at $a \in \mathbb{R}$ and g be differentiable at $f(a)$. Then the composite function $g \circ f$ is differentiable at a and $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a)$.

Proof. Define

$$
G(y):=\left\{\begin{array}{ll}
\frac{g(y)-g(f(a))}{y-f(a)} & y \neq f(a) \tag{12}\\
g^{\prime}(f(a)) & y=f(a)
\end{array} .\right.
$$

Then we have

$$
\begin{equation*}
\forall x \neq a, \quad \frac{(g \circ f)(x)-(g \circ f)(a)}{x-a}=G(f(x)) \cdot \frac{f(x)-f(a)}{x-a} . \tag{13}
\end{equation*}
$$

As G, f are continuous, we have $\lim _{x \rightarrow a} G(f(x))=G(f(a))=g^{\prime}(f(a))$, as f is differentiable at a, we have $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)$. Thus

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{(g \circ f)(x)-(g \circ f)(a)}{x-a}=\lim _{x \rightarrow a}\left[G(f(x)) \cdot \frac{f(x)-f(a)}{x-a}\right]=g^{\prime}(f(a)) \cdot f^{\prime}(a) \tag{14}
\end{equation*}
$$

and the conclusion follows.
Exercise 4. Prove $G(y)$ is continuous.
Exercise 5. Prove (13).

