Read: Bowman §4.A.

• Differentiability.

DEFINITION 1. A function f is said to be differentiable at $a \in \mathbb{R}$ if and only if the limit $\lim_{x\to a} \frac{f(x) - f(a)}{x-a}$ exists and is finite. In this case the limit is called the derivative of f at a, and denoted f'(a).

Exercise 1. Prove that a function f is differentiable at $a \in \mathbb{R}$ if and only if the limit $\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$ exists and is finite, and in this case the limit is f'(a).

• Basic differentiable functions.

Example 2. $f(x) \equiv c$ is differentiable at every $a \in \mathbb{R}$ with f'(a) = 0; f(x) = x is differentiable at every $a \in \mathbb{R}$ with f'(a) = 1.

Proof. For $f(x) \equiv c$, we have $\frac{f(x) - f(a)}{x - a} = \frac{c - c}{x - a} = 0$ for every $x \neq a$. Consequently

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} 0 = 0.$$
 (1)

For f(x) = x, we have $\frac{f(x) - f(a)}{x - a} = \frac{x - a}{x - a} = 1$ for every $x \neq a$. Consequently

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} 1 = 1.$$
 (2)

Thus ends the proofs.

• Combinations of functions.

THEOREM 3. Let f, g be differentiable at $a \in \mathbb{R}$. Then

- a) $f \pm g$ is differentiable at a with $(f \pm g)'(a) = f'(a) \pm g'(a)$;
- b) fg is differentiable at a with (fg)'(a) = f'(a) g(a) + f(a) g'(a);

c) If
$$g(a) \neq 0$$
, then $\frac{f}{g}$ is differentiable at a with $\left(\frac{f}{g}\right)'(a) = \frac{f'(a) g(a) - f(a) g'(a)}{g(a)^2}$.

Proof. .

a) As
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$
 and $\lim_{x \to a} \frac{g(x) - g(a)}{x - a} = g'(a)$ we have

$$\lim_{x \to a} \frac{(f \pm g)(x) - (f \pm g)(a)}{x - a} = \lim_{x \to a} \frac{[f(x) \pm g(x)] - [f(a) \pm g(a)]}{x - a}$$

$$= \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \pm \frac{g(x) - g(a)}{x - a} \right]$$

$$= \left[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \right] \pm \left[\lim_{x \to a} \frac{g(x) - g(a)}{x - a} \right]$$

$$= f'(a) \pm g'(a).$$

b) We have

$$\lim_{x \to a} \frac{f(x) g(x) - f(a) g(a)}{x - a} = \lim_{x \to a} \frac{[f(x) - f(a)] g(x) + f(a) [g(x) - g(a)]}{x - a}$$
$$= \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \cdot g(x) \right] + \lim_{x \to a} \left[f(a) \cdot \frac{g(x) - g(a)}{x - a} \right]$$
$$= \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \cdot g(x) \right] + \left[\lim_{x \to a} f(a) \right] \cdot \left[\lim_{x \to a} \frac{g(x) - g(a)}{x - a} \right]$$
$$= \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \cdot g(x) \right] + f(a) g'(a).$$
(3)

To proceed we need the following lemma:

LEMMA 4. Let f be differentiable at $a \in \mathbb{R}$. Then f is continuous at a.

Proof. (OF THE LEMMA) We have

$$\lim_{x \to a} \left[f(x) - f(a) \right] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a) = f'(a) \cdot 0 = 0.$$
(4)

Therefore $\lim_{x\to a} f(x) = \lim_{x\to a} f(a) = f(a)$ and continuity follows.

With help of the above lemma we have

$$\lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \cdot g(x) \right] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} g(x) = f'(a) g(a) \tag{5}$$

and the conclusion follows.

c) We have

$$\lim_{x \to a} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} = \lim_{x \to a} \left[\frac{f(x) g(a) - f(a) g(x)}{x - a} \cdot \frac{1}{g(x) g(a)}\right]$$
$$= \lim_{x \to a} \left\{ \left[\frac{f(x) - f(a)}{x - a} \cdot g(a) - f(a) \cdot \frac{g(x) - g(a)}{x - a}\right] \cdot \frac{1}{g(x) g(a)} \right\}$$
$$= \left[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} g(a) - \lim_{x \to a} f(a) \cdot \lim_{x \to a} \frac{g(x) - g(a)}{x - a}\right] \cdot \frac{1}{g(x) g(a)}$$
$$= \frac{i \lim_{x \to a} \frac{1}{g(x) g(a)}}{g(a)^2}.$$
(6)

Thus ends the proofs.

Exercise 2. Point out where was the assumption $g(a) \neq 0$ used in the above proof.

- Polynomials and Rational Functions.
 - From the above we see that polynomials are differentiable everywhere and rational functions $\frac{P(x)}{Q(x)}$ are differentiale wherever $Q \neq 0$.
 - \circ Calculation.

The key formula for calculation of derivatives for rational functions is

$$(x^{n})' = n \, x^{n-1} \tag{7}$$

which holds true for all $n \in \mathbb{Z}$.

Example 5. Prove that $(x^3)' = 3x^2$.

Proof. Let $f(x) = x^3$. We need to prove $f'(a) = 3 a^2$ for every $a \in \mathbb{R}$.

- Method 1. We know x' = 1. Therefore $(x^2)' = x' \cdot x + x \cdot x' = 2 x$ and $(x^3)' = (x^2)' \cdot x + x^2 \cdot x' = 3 x^2$.
- Method 2.

We have

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{(a+h)^3 - a^3}{h}$$
$$= \lim_{h \to 0} \frac{[a^3 + 3a^2h + 3ah^2 + h^3] - a^3}{h}$$
$$= \lim_{h \to 0} \frac{3a^2h + 3ah^2 + h^3}{h}$$
$$= \lim_{h \to 0} [3a^2 + 3ah + h^2]$$
$$= 3a^2.$$

Exercise 3. Prove (7).