
Math 117 Fall 2014 Lecture 33 (Nov. 3, 2014)

Read: Bowman �4.A.

� Di�erentiability.

Definition 1. A function f is said to be di�erentiable at a 2 R if and only if the limit
limx!a

f(x)¡ f(a)

x¡ a exists and is �nite. In this case the limit is called the derivative of f at a,

and denoted f 0(a).

Exercise 1. Prove that a function f is di�erentiable at a2R if and only if the limit limh!0
f(a+ h)¡ f(a)

h
exists and is �nite, and in this case the limit is f 0(a).

� Basic di�erentiable functions.

Example 2. f(x)� c is di�erentiable at every a2R with f 0(a)=0; f(x)=x is di�erentiable
at every a2R with f 0(a)= 1.

Proof. For f(x)� c, we have f(x)¡ f(a)

x¡ a =
c¡ c
x¡ a =0 for every x=/ a. Consequently

lim
x!a

f(x)¡ f(a)
x¡ a = lim

x!a
0=0: (1)

For f(x)=x, we have f(x)¡ f(a)

x¡ a =
x¡ a
x¡ a =1 for every x=/ a. Consequently

lim
x!a

f(x)¡ f(a)
x¡ a = lim

x!a
1=1: (2)

Thus ends the proofs. �

� Combinations of functions.

Theorem 3. Let f ; g be di�erentiable at a2R. Then

a) f � g is di�erentiable at a with (f � g)0(a)= f 0(a)� g 0(a);

b) f g is di�erentiable at a with (f g)0(a)= f 0(a) g(a)+ f(a) g 0(a);

c) If g(a)=/ 0, then f

g
is di�erentiable at a with

�
f

g

�0
(a)=

f 0(a) g(a)¡ f(a) g 0(a)

g(a)2
.

Proof. .

a) As limx!a
f(x)¡ f(a)

x¡a = f 0(a) and limx!a
g(x)¡ g(a)

x¡ a = g 0(a) we have

lim
x!a

(f � g)(x)¡ (f � g)(a)
x¡ a = lim

x!a

[f(x)� g(x)]¡ [f(a)� g(a)]
x¡ a

= lim
x!a

�
f(x)¡ f(a)

x¡ a � g(x)¡ g(a)
x¡ a

�
=

�
lim
x!a

f(x)¡ f(a)
x¡ a

�
�
�
lim
x!a

g(x)¡ g(a)
x¡ a

�
= f 0(a)� g 0(a):



b) We have

lim
x!a

f(x) g(x)¡ f(a) g(a)
x¡ a = lim

x!a

[f(x)¡ f(a)] g(x)+ f(a) [g(x)¡ g(a)]
x¡ a

= lim
x!a

�
f(x)¡ f(a)

x¡ a � g(x)
�
+ lim

x!a

�
f(a) � g(x)¡ g(a)

x¡ a

�
= lim

x!a

�
f (x)¡ f (a)

x¡ a
� g(x)

�
+

h
lim
x!a

f (a)
i

��
lim
x!a

g(x)¡ g(a)
x¡ a

�
= lim

x!a

�
f(x)¡ f(a)

x¡ a � g(x)
�
+ f(a) g 0(a): (3)

To proceed we need the following lemma:

Lemma 4. Let f be di�erentiable at a2R. Then f is continuous at a.

Proof. (of the Lemma) We have

lim
x!a

[f(x)¡ f(a)]= lim
x!a

f(x)¡ f(a)
x¡ a � (x¡ a)= f 0(a) � 0=0: (4)

Therefore limx!af(x)= limx!af(a)= f(a) and continuity follows. �

With help of the above lemma we have

lim
x!a

�
f(x)¡ f(a)

x¡ a � g(x)
�
= lim

x!a

f(x)¡ f(a)
x¡ a � lim

x!a
g(x)= f 0(a) g(a) (5)

and the conclusion follows.

c) We have

lim
x!a

�
f

g

�
(x)¡

�
f

g

�
(a)

x¡ a = lim
x!a

�
f(x) g(a)¡ f(a) g(x)

x¡ a � 1

g(x) g(a)

�
= lim

x!a

��
f(x)¡ f(a)

x¡ a � g(a)¡ f(a) � g(x)¡ g(a)
x¡ a

�
� 1
g(x) g(a)

�
=

�
lim
x!a

f(x)¡ f(a)
x¡ a � lim

x!a
g(a)¡ lim

x!a
f(a) � lim

x!a

g(x)¡ g(a)
x¡ a

�
�

� lim
x!a

1
g(x) g(a)

=
f 0(a) g(a)¡ f(a) g 0(a)

g(a)2
: (6)

Thus ends the proofs. �

Exercise 2. Point out where was the assumption g(a)=/ 0 used in the above proof.

� Polynomials and Rational Functions.

� From the above we see that polynomials are di�erentiable everywhere and rational
functions P (x)

Q(x)
are di�erentiale wherever Q=/ 0.

� Calculation.



The key formula for calculation of derivatives for rational functions is

(xn)0=nxn¡1 (7)

which holds true for all n2Z.

Example 5. Prove that (x3)0=3x2.

Proof. Let f(x)= x3. We need to prove f 0(a)= 3 a2 for every a2R.

¡ Method 1.
We know x0 = 1. Therefore (x2)0 = x0 � x + x � x0 = 2 x and (x3)0 =

(x2)0 �x+x2 �x0=3x2.

¡ Method 2.
We have

lim
h!0

f(a+h)¡ f(a)
h

= lim
h!0

(a+h)3¡ a3
h

= lim
h!0

[a3+3 a2h+3 a h2+h3]¡ a3
h

= lim
h!0

3 a2h+3 a h2+h3

h
= lim

h!0
[3 a2+3 a h+h2]

= 3a2:

�

Exercise 3. Prove (7).
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