Math 117 Fall 2014 Lecture 32 (Осt. 31, 2014)

In today's lecture $a, b \in \mathbb{R}$. Some of the results can be generalized to the situation $a=-\infty$ or $b=\infty$, some cannot.

- Continuous invertible functions are monotone.

Theorem 1. Let f be continuous on $[a, b]$ and is one-to-one. Then f is either strictly increasing or strictly decreasing.

Proof. It suffices to prove that, under the assumptions above,

- If $f(a)<f(b)$, then f is strictly increasing;
- If $f(a)>f(b)$, then f is strictly decreasing.

The proofs for the two cases are almost identical so we will only prove the first one. The proof is divided into two steps.

- Step 1. Let $x \in(a, b)$ be arbitrary. Then $f(a)<f(x)<f(b)$.

Assume the contrary. Then there are two cases: $f(x)<f(a)<f(b), f(a)<f(b)<$ $f(x)$. Note that all inequalities are strict as f is one-to-one. We prove the first case and leave the second one as exercise.

Let $s \in(f(x), f(a))$. As $f(a)<f(b)$, we see that there holds $s \in(f(x), f(b))$. Application of the Intermediate Value Theorem on $[a, x]$ we see that there is $c_{1} \in(a, x)$ such that $f\left(c_{1}\right)=s$. Application of IVT on $[x, b]$ gives the existence of $c_{2} \in(x, b)$ such that $f\left(c_{2}\right)=s$. As $c_{1}<x<c_{2}, c_{1} \neq c_{2}$. This is contradiction to the assumption that f is one-to-one.

- Step 2. Let $a<x<y<b$ be arbitrary. From Step 1 we know that $f(x)<f(b)$. Now repeat Step 1 for $x, y, b(x$ as a, y as x, and b as b) we see that $f(x)<f(y)<f(b)$.
Thus we have proved: For arbitrary $a \leqslant x<y \leqslant b, f(x)<f(y)$. Thus f is strictly increasing.
Exercise 1. Write detailed proof for the case $f(a)<f(b)<f(x)$ in Step 1 of the above proof.
- Continuity of inverse functions

Theorem 2. Let f be one-to-one on $[a, b]$ and continuous. Then f is invertible on $[a, b]$ with inverse function g defined on a closed interval $[c, d]$. Furthermore g is continuous, and g has the same monotonicity as f.

Proof. We first prove the existence of g, and then the monotonicity, and finally the continuity.

- Existence of g.

All we need to prove is $f([a, b])$ is a closed interval. From Theorem 1 we know that f is either strictly increasing or strictly decreasing. Wlog we assume it is strictly increasing. We claim $f([a, b])=[f(a), f(b)]$.

- $\quad f([a, b]) \subseteq[f(a), f(b)]$. Let $x \in[a, b]$ be arbitrary. From Theorem 1 we see that $x \in[a, b] \Longrightarrow f(a) \leqslant f(x) \leqslant f(b) \Longrightarrow f(x) \in[f(a), f(b)]$.
$-\quad[f(a), f(b)] \subseteq f([a, b])$. Let $y \in[f(a), f(b)]$. By IVT there is $x \in[a, b]$ such that $f(x)=y$ so $y \in f([a, b])$.
In the following we denote $f([a, b])=[c, d]$.
- Monotonicity of g.

Assume f is strictly increasing (the case f is strictly decreasing is almost identical), we prove g is also strictly increasing. Let $c \leqslant y_{1}<y_{2} \leqslant d$. Assume $g\left(y_{1}\right) \geqslant g\left(y_{2}\right)$. Then $y_{1}=f\left(g\left(y_{1}\right)\right) \geqslant f\left(g\left(y_{2}\right)\right)=y_{2}$. Contradiction. Therefore $g\left(y_{1}\right)<g\left(y_{2}\right)$.

- Continuity of g.

Let $y_{0} \in(c, d)$ be arbitrary. We will prove $\lim _{y \rightarrow y_{0}+} g(y)=g\left(y_{0}\right)$ and leave $\lim _{y \rightarrow y_{0}-} g(y)=g\left(y_{0}\right)$ as exercise.

As $y>y_{0} \Longrightarrow g(y)>g\left(y_{0}\right)$ and $g(y)$ is decreasing as y approaches y_{0} from the right (some times written as $y \searrow y_{0}$), the limit $\lim _{y \rightarrow y_{0}+} g(y)$ exists. We denote it by L. Following Comparison Theorem $L \geqslant g\left(y_{0}\right)$.

Assume $L>g\left(y_{0}\right)$. Then we calculate, using the monotonicity and continuity of f, as well as the fact that g is the inverse function of f,

$$
\begin{equation*}
y_{0}=f\left(g\left(y_{0}\right)\right)<f(L)=f\left(\lim _{y \rightarrow y_{0}+} g(y)\right)=\lim _{y \rightarrow y_{0}+} f(g(y))=\lim _{y \rightarrow y_{0}+} y=y_{0} . \tag{1}
\end{equation*}
$$

Contradiction. Therefore $L=g\left(y_{0}\right)$.
Exercise 2. Prove $\lim _{y \rightarrow y_{0}-} g(y)=g\left(y_{0}\right)$.
Exercise 3. Prove continuity of g at $y=c$ and $y=d$.
Example 3. $\ln x$, the inverse function of e^{x}, is strictly increasing and continuous on $(0,+\infty)$.

- Max and Min.

Theorem 4. Let $f:[a, b] \mapsto \mathbb{R}$ be continuous. Then
a) There are $x_{M}, x_{m} \in[a, b]$ such that

$$
\begin{equation*}
\forall x \in[a, b], \quad f\left(x_{m}\right) \leqslant f(x) \leqslant f\left(x_{M}\right) \tag{2}
\end{equation*}
$$

We call x_{M} a "maximizer" of f over $[a, b]$ and x_{m} a "minimizer" of f over $[a, b]$.
b) $f([a, b])=\left[f\left(x_{m}\right), f\left(x_{M}\right)\right]$. In particular f is bounded.

Proof. We prove the existence of x_{M} and leave the remaining of the proof as exercises. Denote $L:=\sup _{[a, b]} f:=\{y \mid y \in f([a, b])\}$. Then there are $x_{n} \in[a, b]$ such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ L. Since $\left\{x_{n}\right\} \subset[a, b]$ it is a bounded sequence. Following Bolzano-Weierstrass there is a subsequence $\left\{x_{n_{k}}\right\}$ that converges to some $x_{M} \in \mathbb{R}$.

As $a \leqslant x_{n_{k}} \leqslant b$, by Comparison we have $a \leqslant x_{M} \leqslant b$ that is $x_{M} \in[a, b]$. Furthermore by continuity of f we have

$$
\begin{equation*}
f\left(x_{M}\right)=f\left(\lim _{k \rightarrow \infty} x_{n_{k}}\right)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=L \tag{3}
\end{equation*}
$$

Thus ends the proof for existence of the maximizer.
Exercise 4. Prove the existence of x_{m}.
Exercise 5. Prove part b).

