MATH 117 FALL 2014 LECTURE 32 (Ocr. 31, 2014)

In today’s lecture a,b € R. Some of the results can be generalized to the situation a = —o0 or b= o0,
some cannot.

Continuous invertible functions are monotone.

THEOREM 1. Let f be continuous on [a, b] and is one-to-one. Then f is either strictly
increasing or strictly decreasing.

Proof. It suffices to prove that, under the assumptions above,
o If f(a)< f(b), then f is strictly increasing;
o If f(a)> f(b), then f is strictly decreasing.

The proofs for the two cases are almost identical so we will only prove the first one. The
proof is divided into two steps.

o Step 1. Let x € (a,b) be arbitrary. Then f(a) < f(z) < f(b).

Assume the contrary. Then there are two cases: f(x) < f(a) < f(b), f(a)< f(b) <
f(x). Note that all inequalities are strict as f is one-to-one. We prove the first case
and leave the second one as exercise.

Let s € (f(x), f(a)). As f(a) < f(b), we see that there holds s € (f(z), f(b)).
Application of the Intermediate Value Theorem on [a,z] we see that there is ¢; € (a,z)
such that f(c;)=s. Application of IVT on [z, b] gives the existence of ¢z € (x,b) such
that f(c2) =s. As ¢1 <z < ¢, c1# co. This is contradiction to the assumption that f
is one-to-one.

o Step 2. Let a <z <y <b be arbitrary. From Step 1 we know that f(z)< f(b). Now
repeat Step 1 for z,y,b (x as a, y as x, and b as b) we see that f(z)< f(y) < f(b).

Thus we have proved: For arbitrary a <z <y<b, f(z) < f(y). Thus f is strictly increasing. [

Exercise 1. Write detailed proof for the case f(a)< f(b)< f(x) in Step 1 of the above proof.

Continuity of inverse functions

THEOREM 2. Let f be one-to-one on [a,b] and continuous. Then f is invertible on [a,b] with
inverse function g defined on a closed interval [c,d]. Furthermore g is continuous, and g has
the same monotonicity as f.

Proof. We first prove the existence of ¢, and then the monotonicity, and finally the conti-
nuity.
o [Existence of g.

All we need to prove is f([a, b]) is a closed interval. From Theorem 1 we know
that f is either strictly increasing or strictly decreasing. Wlog we assume it is strictly
increasing. We claim f([a,b]) =[f(a), f(b)].

—  f([a,b]) C[f(a), f(D)]. Let x € [a, ] be arbitrary. From Theorem 1 we see that
z€la, b= f(a) < f(z) < f(b) = f(x) €[f(a), f(D)].
— [f(a), f(B)]C f([a,b]). Let y€[f(a), f(b)]. By IVT there is x € [a, b] such that
f(@)=yso y€ f([a,b]).
In the following we denote f([a,b])=|c,d].



o Monotonicity of g.

Assume f is strictly increasing (the case f is strictly decreasing is almost iden-
tical), we prove g is also strictly increasing. Let ¢ < y1 < y2 <d. Assume g(y1) = g(y2).
Then y1= f(g(y1)) = f(g(y2)) = y2. Contradiction. Therefore g(y1) < g(y2).

o Continuity of g.

Let yo € (¢, d) be arbitrary. We will prove lim,,,,+9(y) = ¢(yo) and leave
limy—, 4o—g(y) = g(yo) as exercise.

As y > yo = ¢g(y) > g(yo) and ¢g(y) is decreasing as y approaches yo from the
right (some times written as y \, yo), the limit lim,_,,4+g(y) exists. We denote it by
L. Following Comparison Theorem L > g(yo).

Assume L > g(yo). Then we calculate, using the monotonicity and continuity of
f, as well as the fact that ¢ is the inverse function of f,

vo=1(9(y0)) < f(L)=f( Tim g(y))= Tim flg(y))= lim y=yo. (1)

Yy—yo+ Yy—yo+ Yy—Yo+

Contradiction. Therefore L= g(yo). O

Exercise 2. Prove lim,_,,,—g(y) = g(yo).

Exercise 3. Prove continuity of g at y=c and y=d.
Example 3. Inz, the inverse function of e*, is strictly increasing and continuous on (0, +00).
Max and Min.

THEOREM 4. Let f:[a,bl— R be continuous. Then

a) There are xpr, Tm € |a, b] such that
veela,b],  flom) < f(z) < flzm). (2)

We call xpr a “mazimizer” of f over [a,b] and ., a “minimizer” of f over [a,b].

b) f([a,b]) =[f(xm), f(zrm)]. In particular f is bounded.

Proof. We prove the existence of xjs and leave the remaining of the proof as exercises.
Denote L :=supy, s f :={y|y € f([a,b])}. Then there are ., € [a, ] such that limy, e f(75) =
L. Since {x,} C [a, b] it is a bounded sequence. Following Bolzano-Weierstrass there is a
subsequence {x,, } that converges to some x s € R.

As a < xp, < b, by Comparison we have a < xpr < b that is zs € [a, b]. Furthermore by
continuity of f we have

fasn) = 1( Jim zn, ) = fim San,) =L ®
Thus ends the proof for existence of the maximizer. ]

Exercise 4. Prove the existence of x,,.

Exercise 5. Prove part b).
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