
Math 117 Fall 2014 Lecture 32 (Oct. 31, 2014)

In today's lecture a; b2R. Some of the results can be generalized to the situation a=¡1 or b=1,
some cannot.

� Continuous invertible functions are monotone.

Theorem 1. Let f be continuous on [a; b] and is one-to-one. Then f is either strictly
increasing or strictly decreasing.

Proof. It su�ces to prove that, under the assumptions above,

� If f(a)< f(b), then f is strictly increasing;

� If f(a)> f(b), then f is strictly decreasing.

The proofs for the two cases are almost identical so we will only prove the �rst one. The
proof is divided into two steps.

� Step 1. Let x2 (a; b) be arbitrary. Then f(a)< f(x)< f(b).
Assume the contrary. Then there are two cases: f(x)< f(a)< f(b), f(a)< f(b)<

f(x). Note that all inequalities are strict as f is one-to-one. We prove the �rst case
and leave the second one as exercise.

Let s 2 (f(x); f(a)). As f(a) < f(b), we see that there holds s 2 (f(x); f(b)).
Application of the Intermediate Value Theorem on [a;x] we see that there is c12 (a;x)
such that f(c1)= s. Application of IVT on [x; b] gives the existence of c22 (x; b) such
that f(c2)= s. As c1<x<c2, c1=/ c2. This is contradiction to the assumption that f
is one-to-one.

� Step 2. Let a<x< y < b be arbitrary. From Step 1 we know that f(x)< f(b). Now
repeat Step 1 for x; y; b (x as a, y as x, and b as b) we see that f(x)< f(y)< f(b).

Thus we have proved: For arbitrary a6x<y6b, f(x)<f(y). Thus f is strictly increasing. �

Exercise 1. Write detailed proof for the case f(a)< f(b)< f(x) in Step 1 of the above proof.

� Continuity of inverse functions

Theorem 2. Let f be one-to-one on [a; b] and continuous. Then f is invertible on [a; b] with
inverse function g de�ned on a closed interval [c; d]. Furthermore g is continuous, and g has
the same monotonicity as f.

Proof. We �rst prove the existence of g, and then the monotonicity, and �nally the conti-
nuity.

� Existence of g.
All we need to prove is f([a; b]) is a closed interval. From Theorem 1 we know

that f is either strictly increasing or strictly decreasing. Wlog we assume it is strictly
increasing. We claim f([a; b]) = [f(a); f(b)].

¡ f([a; b])� [f(a); f(b)]. Let x2 [a; b] be arbitrary. From Theorem 1 we see that
x2 [a; b] =) f(a)6 f(x)6 f(b)=) f(x)2 [f(a); f(b)].

¡ [f(a); f(b)]� f([a; b]). Let y2 [f(a); f(b)]. By IVT there is x2 [a; b] such that
f(x)= y so y 2 f([a; b]).

In the following we denote f([a; b])= [c; d].



� Monotonicity of g.
Assume f is strictly increasing (the case f is strictly decreasing is almost iden-

tical), we prove g is also strictly increasing. Let c6 y1<y26d. Assume g(y1)> g(y2).
Then y1= f(g(y1))> f(g(y2))= y2. Contradiction. Therefore g(y1)< g(y2).

� Continuity of g.
Let y0 2 (c; d) be arbitrary. We will prove limy!y0+g(y) = g(y0) and leave

limy!y0¡g(y)= g(y0) as exercise.
As y > y0 =) g(y) > g(y0) and g(y) is decreasing as y approaches y0 from the

right (some times written as y& y0), the limit limy!y0+g(y) exists. We denote it by
L. Following Comparison Theorem L> g(y0).

Assume L > g(y0). Then we calculate, using the monotonicity and continuity of
f , as well as the fact that g is the inverse function of f ,

y0= f(g(y0))< f(L)= f
�

lim
y!y0+

g(y)
�
= lim

y!y0+
f(g(y))= lim

y!y0+
y= y0: (1)

Contradiction. Therefore L= g(y0). �

Exercise 2. Prove limy!y0¡g(y)= g(y0).

Exercise 3. Prove continuity of g at y= c and y= d.

Example 3. lnx, the inverse function of ex, is strictly increasing and continuous on (0;+1).

� Max and Min.

Theorem 4. Let f : [a; b] 7!R be continuous. Then

a) There are xM ; xm2 [a; b] such that

8x2 [a; b]; f(xm)6 f(x)6 f(xM): (2)

We call xM a �maximizer� of f over [a; b] and xm a �minimizer� of f over [a; b].

b) f([a; b]) = [f(xm); f(xM)]. In particular f is bounded.

Proof. We prove the existence of xM and leave the remaining of the proof as exercises.
Denote L := sup[a;b]f :=fyj y2 f([a; b])g. Then there are xn2 [a; b] such that limn!1f(xn)=

L. Since fxng � [a; b] it is a bounded sequence. Following Bolzano-Weierstrass there is a
subsequence fxnkg that converges to some xM 2R.

As a6 xnk6 b, by Comparison we have a6 xM 6 b that is xM 2 [a; b]. Furthermore by
continuity of f we have

f(xM)= f
�

lim
k!1

xnk

�
= lim

k!1
f(xnk)=L: (3)

Thus ends the proof for existence of the maximizer. �

Exercise 4. Prove the existence of xm.

Exercise 5. Prove part b).
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