MATH 117 FALL 2014 LECTURE 31 (Oct. 30, 2014)

• Trigonometric functions.

PROPOSITION 1. $\sin x$ and $\cos x$ are continuous at every $a \in \mathbb{R}$ if and only if $\lim_{x\to 0+} \sin x = 0$ and $\lim_{x\to 0+} \cos x = 1$.

Exercise 1. Prove this. (Hint: 1)

Remark 2. The proof of $\lim_{x\to 0^+} \sin x = 0$ and $\lim_{x\to 0^+} \cos x = 1$ is usually done through geometric argument, as Newton did. However this is against our philosophy here so we will skip it and just accept these as true.

Exercise 2. Prove that $\lim_{x\to a} \frac{\sin a}{\cos a}$ does not exist when $\cos a \neq 0$.

• Intermediate Value Theorem.

THEOREM 3. Let $f(x): [a, b] \mapsto \mathbb{R}$ be continuous. Then for every s between f(a) and f(b) there is at least one $c \in [a, b]$ such that f(c) = s.

Proof. First the cases s = f(a) or s = f(b) are trivial. Thus in the following we consider f(a) < s < f(b) and f(b) < s < f(a) can be proved almost identically. Define

 $A := \{ x \in [a, b] | \forall y \ge x, f(y) > s \}.$

Clearly $b \in A$ so A is not empty. Set $c := \inf A$. We try to prove f(c) = s.

- We prove $f(c) \leq s$. Assume the contrary, that is f(c) > s. As f is continuous there is $\delta > 0$ such that $\forall |x c| < \delta$, |f(x) f(c)| < f(c) s. Note that this means for such x we have f(x) > s. Let $c \delta < x_0 < c$. Then for all $x_0 \leq y \leq c$, we have f(y) > s. On the other hand, for every y > c, there is $y_0 \in A$ such that $y_0 < y$ and therefore f(y) > s by the definition of A. Summarizing, we see that $y \geq x_0 \Longrightarrow f(y) > s$ and consequently $x_0 \in A$. But this contradicts $c = \inf A$.
- We prove $f(c) \ge s$. As $c := \inf A$, there is $x_n \in A$ such that $\lim_{n \to \infty} x_n = c$. By definition of A we have $f(x_n) > s$. Thus by Comparison Theorem and the continuity of f we have

$$f(c) = \lim_{n \to \infty} f(x_n) \ge \lim_{n \to \infty} s = s.$$
(2)

(1)

Thus $f(c) \leq s$ and $f(c) \geq s$ are both true and consequently f(c) = s.

• Applications of IVT.

Example 4. Let $f(x) := x^5 - 7x^4 + 2x^3 + 3x + 2$. Prove that f has at least one real root. That is there is $c \in \mathbb{R}$ such that f(c) = 0.

Proof. We have f(0) = 2 > 0 and f(-1) = -11 < 0. Furthermore f(x) is a polynomial and is therefore continuous on [-1, 0]. Application of IVT now gives the existence of $s \in [-1, 0]$ such that f(s) = 0.

Exercise 3. Prove that the equation $7x^6 - 9x^5 - 1 = 0$ has lt least two real solutions.

^{1.} Use the formulas for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$.