Math 117 Fall 2014 Lecture 31 (Ост. 30, 2014)

- Trigonometric functions.

Proposition 1. $\sin x$ and $\cos x$ are continuous at every $a \in \mathbb{R}$ if and only if $\lim _{x \rightarrow 0+} \sin x=0$ and $\lim _{x \rightarrow 0+} \cos x=1$.

Exercise 1. Prove this. (Hint: ${ }^{1}$)
Remark 2. The proof of $\lim _{x \rightarrow 0+} \sin x=0$ and $\lim _{x \rightarrow 0+} \cos x=1$ is usually done through geometric argument, as Newton did. However this is against our philosophy here so we will skip it and just accept these as true.

Exercise 2. Prove that $\lim _{x \rightarrow a} \frac{\sin a}{\cos a}$ does not exist when $\cos a \neq 0$.

- Intermediate Value Theorem.

THEOREM 3. Let $f(x):[a, b] \mapsto \mathbb{R}$ be continuous. Then for every s between $f(a)$ and $f(b)$ there is at least one $c \in[a, b]$ such that $f(c)=s$.

Proof. First the cases $s=f(a)$ or $s=f(b)$ are trivial. Thus in the following we consider $f(a)<s<f(b)$ and $f(b)<s<f(a)$ can be proved almost identically.

Define

$$
\begin{equation*}
A:=\{x \in[a, b] \mid \forall y \geqslant x, f(y)>s\} . \tag{1}
\end{equation*}
$$

Clearly $b \in A$ so A is not empty. Set $c:=\inf A$. We try to prove $f(c)=s$.

- We prove $f(c) \leqslant s$. Assume the contrary, that is $f(c)>s$. As f is continuous there is $\delta>0$ such that $\forall|x-c|<\delta,|f(x)-f(c)|<f(c)-s$. Note that this means for such x we have $f(x)>s$. Let $c-\delta<x_{0}<c$. Then for all $x_{0} \leqslant y \leqslant c$, we have $f(y)>s$. On the other hand, for every $y>c$, there is $y_{0} \in A$ such that $y_{0}<y$ and therefore $f(y)>s$ by the definition of A. Summarizing, we see that $y \geqslant x_{0} \Longrightarrow f(y)>s$ and consequently $x_{0} \in A$. But this contradicts $c=\inf A$.
- We prove $f(c) \geqslant s$. As $c:=\inf A$, there is $x_{n} \in A$ such that $\lim _{n \rightarrow \infty} x_{n}=c$. By definition of A we have $f\left(x_{n}\right)>s$. Thus by Comparison Theorem and the continuity of f we have

$$
\begin{equation*}
f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \geqslant \lim _{n \rightarrow \infty} s=s \tag{2}
\end{equation*}
$$

Thus $f(c) \leqslant s$ and $f(c) \geqslant s$ are both true and consequently $f(c)=s$.

- Applications of IVT.

Example 4. Let $f(x):=x^{5}-7 x^{4}+2 x^{3}+3 x+2$. Prove that f has at least one real root. That is there is $c \in \mathbb{R}$ such that $f(c)=0$.

Proof. We have $f(0)=2>0$ and $f(-1)=-11<0$. Furthermore $f(x)$ is a polynomial and is therefore continuous on $[-1,0]$. Application of IVT now gives the existence of $s \in[-1,0]$ such that $f(s)=0$.

Exercise 3. Prove that the equation $7 x^{6}-9 x^{5}-1=0$ has lt least two real solutions.

[^0]
[^0]: 1. Use the formulas for $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$.
