MATH 117 FALL 2014 LECTURE 30 (Oct. 29, 2014)

• Continuity of composite function.

THEOREM 1. Let f be continuous at $a \in \mathbb{R}$ and g be continuous at $f(a) \in \mathbb{R}$. Then $g \circ f$ is continuous at a.

Proof. Let $\varepsilon > 0$ be arbitrary.

As g is continuous at f(a), there is $\delta_1 > 0$ such that $\forall |y - f(a)| < \delta_1$, $|g(y) - g(f(a))| < \varepsilon$. As f is continuous at a, there is $\delta > 0$ such that $\forall |x - a| < \delta$, $|f(x) - f(a)| < \delta_1$.

Now for every $|x-a| < \delta$, we have $|f(x) - f(a)| < \delta_1$ which leads to $|g(f(x)) - g(f(a))| < \varepsilon$. The proof thus ends.

• Exponential function.

We define the exponential function for $x \in \mathbb{R}$ through

$$E(x) := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{nx}.$$
(1)

Remark 2. Note that the issue is quite subtle here as we have to ask: How is $\left(1+\frac{1}{n}\right)^{nx}$ defined? In particular, the usual definition $a^x := e^{x \ln a}$ is not appropriate here.

Problem 1. Try to define $\left(1+\frac{1}{n}\right)^{nx}$ appropriately so that we do not fall into circular reasoning. **Problem 2.** Prove that E(x) exists for every $x \in \mathbb{R}$.

LEMMA 3. $E(0) = 1; \quad E(x+y) = E(x) E(y).$

Proof. We have

$$E(0) = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n \cdot 0} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^0 = \lim_{n \to \infty} 1 = 1.$$
(2)

We have

$$E(x + y) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n(x+y)} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n}\right)^{nx} \cdot \left(1 + \frac{1}{n}\right)^{ny} \right] = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{ny} \right] = E(x) E(y).$$

$$(3)$$

Note that the above argument is legitimate only because $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{nx}$ and $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{ny}$ both exists.

PROPOSITION 4. If $\lim_{x\to 0+} E(x) = 1$, then E(x) is continuous at every $a \in \mathbb{R}$.

Proof. First we show that if $\lim_{x\to 0} E(x) = 1$ then E(x) is continuous at every $a \in \mathbb{R}$. Let $a \in \mathbb{R}$ be arbitrary. Then we have

$$\lim_{x \to a} E(x) = \lim_{x \to a} \left[E(x-a) E(a) \right] = E(a) \lim_{x \to a} E(x-a) = E(a) \lim_{t \to 0} E(t) = E(a).$$
(4)

Next we prove that $\lim_{x\to 0^+} E(x) = 1$, then $\lim_{x\to 0^-} E(x) = 1$. Once this is done $\lim_{x\to 0} E(x) = 1$ immediately follows (see exercise below). As E(x) E(-x) = 1, we have

$$\lim_{x \to 0^{-}} E(x) = \lim_{x \to 0^{-}} \frac{1}{E(-x)} = \frac{1}{\lim_{t \to 0^{+}} E(t)} = \frac{1}{1} = 1.$$
(5)

Thus ends the proof.

Exercise 1. Prove by definition that $\lim_{x\to a} E(x-a) = \lim_{t\to 0} E(t)$.

Exercise 2. Prove by definition that $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a+} f(x) = \lim_{x\to a-} f(x) = L$.

PROPOSITION 5. $\lim_{x\to 0+} E(x) = 1$.

Remark 6. Note that the following argument is not correct:

$$\lim_{x \to 0+} E(x) = \lim_{x \to 0+} \left[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{nx} \right] = \lim_{n \to \infty} \left[\lim_{x \to 0+} \left(1 + \frac{1}{n} \right)^{nx} \right] = \lim_{n \to \infty} 1 = 1.$$
(6)

Problem 3. Study the two double limits:

$$\lim_{n \to \infty} \left[\lim_{m \to \infty} \left[\cos(2\pi m! x) \right]^n \right]; \qquad \lim_{m \to \infty} \left[\lim_{n \to \infty} \left[\cos(2\pi m! x) \right]^n \right].$$
(7)

Which one equals the Dirichlet function $D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$.

Proof. (OF THE PROPOSITION) Recall that we have proved before

$$\forall n \in \mathbb{N}, \qquad \left(1 + \frac{1}{n}\right)^n < 4. \tag{8}$$

Thus we have

$$1 < \left(1 + \frac{1}{n}\right)^{nx} < 4^x. \tag{9}$$

Application of Comparison Theorem gives

$$1 \leqslant E(x) \leqslant 4^x. \tag{10}$$

Now apply Squeeze Theorem we have

$$\lim_{x \to 0+} E(x) = 1.$$
 (11) \Box

Problem 4. Prove $\lim_{x\to 0+} 4^x = 1$. Note that you have to appropriately define the function 4^x first.